File size: 28,417 Bytes
d727a17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_8024/106390013.py:10: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from tqdm.autonotebook import tqdm\n"
]
}
],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(\"..\")\n",
"\n",
"import re\n",
"import json\n",
"import fire\n",
"import string\n",
"\n",
"from tqdm.autonotebook import tqdm\n",
"from medalpaca.inferer import Inferer\n",
"\n",
"\n",
"greedy_search = {\n",
" \"num_beams\" : 1, \n",
" \"do_sample\" : False,\n",
" \"max_new_tokens\" : 128, \n",
" \"early_stopping\" : False\n",
"}\n",
"\n",
"beam_serach = {\n",
" \"num_beams\" : 4, \n",
" \"do_sample\" : False,\n",
" \"max_new_tokens\" : 128, \n",
" \"early_stopping\" : True,\n",
"}\n",
"\n",
"sampling_top_k = {\n",
" \"do_sample\" : True,\n",
" \"num_beams\": 1,\n",
" \"max_new_tokens\": 128, \n",
" \"early_stopping\": True,\n",
" \"temperature\": 0.7,\n",
" \"top_k\": 50\n",
"}\n",
"\n",
"sampling_top_p = {\n",
" \"do_sample\" : True,\n",
" \"top_k\": 0, \n",
" \"num_beams\": 1,\n",
" \"max_new_tokens\": 128, \n",
" \"early_stopping\": True,\n",
" \"temperature\": 0.7,\n",
" \"top_p\": 0.9\n",
"}\n",
"\n",
"sampling = {\n",
" \"do_sample\" : True,\n",
" \"top_k\": 50, \n",
" \"num_beams\": 1,\n",
" \"max_new_tokens\": 128, \n",
" \"early_stopping\": True,\n",
" \"temperature\": 0.4,\n",
" \"top_p\": 0.9\n",
"}\n",
"\n",
"\n",
"def format_question(d): \n",
" question = d[\"question\"]\n",
" options = d[\"options\"]\n",
" for k, v in options.items(): \n",
" question += f\"\\n{k}: {v}\"\n",
" return question\n",
"\n",
"\n",
"def strip_special_chars(input_str):\n",
" \"Remove special characters from string start/end\"\n",
" if not input_str:\n",
" return input_str\n",
" \n",
" start_index = 0\n",
" end_index = len(input_str) - 1\n",
"\n",
" while start_index < len(input_str) and input_str[start_index] not in string.ascii_letters + string.digits:\n",
" start_index += 1\n",
"\n",
" while end_index >= 0 and input_str[end_index] not in string.ascii_letters + string.digits:\n",
" end_index -= 1\n",
"\n",
" if start_index <= end_index:\n",
" return input_str[start_index:end_index + 1]\n",
" else:\n",
" return \"\"\n",
"\n",
"def starts_with_capital_letter(input_str):\n",
" \"\"\"\n",
" The answers should start like this: \n",
" 'A: '\n",
" 'A. '\n",
" 'A '\n",
" \"\"\"\n",
" pattern = r'^[A-Z](:|\\.|) .+'\n",
" return bool(re.match(pattern, input_str))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# model_name: str, # \"medalpaca/medalpaca-lora-13b-8bit\", \n",
"# prompt_template: str, # \"../medalpaca/prompt_templates/medalpaca.json\", \n",
"# base_model: str, # \"decapoda-research/llama-13b-hf\",\n",
"# peft: bool, # True,\n",
"# load_in_8bit: bool, # True\n",
"# path_to_exams: str, # eval/data/test/\n",
"# ntries: int = 5, \n",
"# skip_if_exists: bool = True,\n",
"\n",
"\n",
"# model = Inferer(\n",
"# model_name='medalpaca/medalpaca-7b',\n",
"# prompt_template=\"../medalpaca/prompt_templates/medalpaca.json\",\n",
"# base_model='decapoda-research/llama-7b-hf',\n",
"# peft=True,\n",
"# load_in_8bit=False,\n",
"# ) \n",
" \n",
"\n",
"from transformers import pipeline\n",
"\n",
"pl = pipeline(\"text-generation\", model=\"medalpaca/medalpaca-7b\", tokenizer=\"medalpaca/medalpaca-7b\")\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/ubuntu/miniconda3/envs/med/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"/home/ubuntu/miniconda3/envs/med/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:362: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`. This was detected when initializing the generation config instance, which means the corresponding file may hold incorrect parameterization and should be fixed.\n",
" warnings.warn(\n",
"Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:02<00:00, 1.04s/it]\n",
"Downloading adapter_model.bin: 100%|ββββββββββ| 33.6M/33.6M [00:01<00:00, 23.9MB/s]\n",
"Device has 1 GPUs available. Provide device={deviceId} to `from_model_id` to use availableGPUs for execution. deviceId is -1 (default) for CPU and can be a positive integer associated with CUDA device id.\n"
]
}
],
"source": [
"from langchain.llms import HuggingFacePipeline\n",
"\n",
"llm = HuggingFacePipeline.from_model_id(\n",
" model_id=\"Ali-C137/Llama-2-7b-chat-hf-tuned-medical-chat\",\n",
" task=\"text-generation\",\n",
" model_kwargs={\"temperature\": 0, \"max_length\": 64}\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"llm(\"hello\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"question = \"What are the symptoms of diabetes?\"\n",
"# context = \"Diabetes is a metabolic disease that causes high blood sugar. The symptoms include increased thirst, frequent urination, and unexplained weight loss.\"\n",
"answer = pl(question,max_length=200)\n",
"print(answer[0]['generated_text'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'generated_text': 'What are the symptoms of diabetes?\\nDiabetes is a disease in which your'}]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"path_to_exams = '/home/ubuntu/LLM/.conda/om/medAlpaca/data_clean/questions/US'"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"100\n"
]
}
],
"source": [
"with open(os.path.join(path_to_exams, f\"test.jsonl\")) as f:\n",
" questions = [json.loads(line) for line in f]\n",
" # print(questions)\n",
"\n",
"outname = os.path.join(path_to_exams, f\"ouput.json\")\n",
"if os.path.exists(outname): \n",
" with open(outname, \"r\") as fp:\n",
" answers = json.load(fp)\n",
"else: \n",
" answers = []\n",
" \n",
"print(len(questions))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/100 [00:00<?, ?it/s]/home/ubuntu/miniconda3/envs/med/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:399: UserWarning: `num_beams` is set to 1. However, `early_stopping` is set to `True` -- this flag is only used in beam-based generation modes. You should set `num_beams>1` or unset `early_stopping`. This was detected when initializing the generation config instance, which means the corresponding file may hold incorrect parameterization and should be fixed.\n",
" warnings.warn(\n",
"/home/ubuntu/miniconda3/envs/med/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:399: UserWarning: `num_beams` is set to 1. However, `early_stopping` is set to `True` -- this flag is only used in beam-based generation modes. You should set `num_beams>1` or unset `early_stopping`.\n",
" warnings.warn(\n",
" 0%| | 0/100 [01:29<?, ?it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"C: Tell the attending that he cannot fail to disclose this mistake.\n",
"\n",
"### Discussion:\n",
"This is an ethi\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"for question in tqdm(questions):\n",
" print(format_question(question))\n",
" n = 0\n",
" response = model(\n",
" instruction=\"Answer this multiple choice question.\", \n",
" input=format_question(question), \n",
" output=\"The Answer to the question is:\",\n",
" **sampling\n",
" )\n",
" response = strip_special_chars(response)\n",
" print(response[:100])\n",
" if starts_with_capital_letter(response): \n",
" n += 1\n",
" break\n",
" else: \n",
" print(f\"Output not satisfactoy, retrying {n} times\")\n",
" question[\"answer\"] = response\n",
" answers.append(response)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answers"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
" with open(outname, \"w+\") as fp:\n",
" json.dump(answers, fp)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/ubuntu/miniconda3/envs/med/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:399: UserWarning: `num_beams` is set to 1. However, `early_stopping` is set to `True` -- this flag is only used in beam-based generation modes. You should set `num_beams>1` or unset `early_stopping`. This was detected when initializing the generation config instance, which means the corresponding file may hold incorrect parameterization and should be fixed.\n",
" warnings.warn(\n",
"/home/ubuntu/miniconda3/envs/med/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:399: UserWarning: `num_beams` is set to 1. However, `early_stopping` is set to `True` -- this flag is only used in beam-based generation modes. You should set `num_beams>1` or unset `early_stopping`.\n",
" warnings.warn(\n"
]
}
],
"source": [
"response = model(\n",
" instruction=\"hello.\", \n",
" input=format_question(question), \n",
" output=\"The Answer to the question is:\",\n",
" **sampling\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/ubuntu/miniconda3/envs/med/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"Loading checkpoint shards: 100%|ββββββββββ| 3/3 [00:27<00:00, 9.22s/it]\n",
"Downloading (β¦)neration_config.json: 100%|ββββββββββ| 284/284 [00:00<00:00, 1.46MB/s]\n"
]
}
],
"source": [
"import torch\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
"from transformers.generation.utils import GenerationConfig\n",
"tokenizer = AutoTokenizer.from_pretrained(\"/home/ubuntu/LLM/text-generation-webui/models/Flmc_DISC-MedLLM\", use_fast=False, trust_remote_code=True)\n",
"model = AutoModelForCausalLM.from_pretrained(\"/home/ubuntu/LLM/text-generation-webui/models/Flmc_DISC-MedLLM\", device_map=\"auto\", torch_dtype=torch.float16, trust_remote_code=True)\n",
"model.generation_config = GenerationConfig.from_pretrained(\"Flmc/DISC-MedLLM\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"messages = []\n",
"messages.append({\"role\": \"user\", \"content\": \"Hello the patient will provide you with the reports & other information regarding the paitent. You have to answer the questions based on the information provided and your knowledge. Next you will talk with the paitent\"})\n",
"response = model.chat(tokenizer, messages)\n"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Yes of course! Please feel free to tell me about yourself so that I may better assist you\n"
]
}
],
"source": [
"messages.append({\"role\": \"user\", \"content\": f\" Hello I am Om, can i ask you questions\"})\n",
"response = model.chat(tokenizer, messages)\n",
"print(response)"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"# report_data = \"my recent cholesterol levels from a lab report. Their total cholesterol is 200 mg/dL, HDL cholesterol is 50 mg/dL, and LDL cholesterol is 130 mg/dL.\"\n",
"report_data = \"None\"\n",
"question = \"i am really worried about my high cholesterol levels. what should i do and what does it indicate?\""
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"messages.append({\"role\": \"user\", \"content\": f\" Detials {report_data} : & User Question {question}\"})\n",
"response = model.chat(tokenizer, messages)"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Cholesterol is a fatty substance that circulates throughout our bloodstreams as part of cell membranes within cells or lipoproteins (plasma proteins) called LDL-cholesterol which are found floating freely around inside plasma membrane bounded by an apo B100 protein molecule attached at one end via its phospholipid bilayer structure . It's essential for maintaining healthy brain function , nerve conduction pathways between neurons along nerves from sensory organs such as taste receptors located primarily underneath tongue epithelium into ganglia situated deep beneath dura mater covering cranial bones forming pa of basilar papilla whereby signals travel downwards towards spinal cord terminating eventually upon synapse connections formed amongst axonal branches projecting outwardly onto muscle fibers resulting ultimately leading upstairs back again all over body so we don't get tired when standing still but instead continue moving forward like this indefinitely without any fatigue feeling\\nCholesterol also plays important roles during embryonic development especially those involved involving neural crest derivatives including adrenal medulla derived chromaffin tissue responsible for producing catecholamines necessary not only just simply controlling heart rate itself per se plus helping regulate cardiac output volume etcetera ; liver sinusoid hepatocytes synthesizing vitamin A retinoic acid; skin keratinization process occurring mainly due to epidermis formation among many others\""
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"response"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import langchain\n",
"import sqlite3\n",
"from langchain.document_loaders import PyPDFLoader \n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.vectorstores import Chroma\n",
"from langchain.llms import OpenAI\n",
"from langchain.chains import ConversationalRetrievalChain,RetrievalQA\n",
"from langchain.document_loaders import UnstructuredPDFLoader\n",
"import openai\n",
"import os\n",
"import PyPDF2\n",
"from langchain.document_loaders.csv_loader import CSVLoader\n",
"from langchain import OpenAI, PromptTemplate\n",
"from langchain.document_loaders import TextLoader, Docx2txtLoader, PyPDFLoader, UnstructuredExcelLoader, CSVLoader\n",
"import logging\n",
"from tqdm import tqdm\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.retrievers.multi_query import MultiQueryRetriever\n",
"from langchain.chains.summarize import load_summarize_chain\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"import pandas as pd\n",
"import uuid\n",
"from PIL import Image\n",
"\n",
"# from utils import get_completion,model_info,model_load\n",
"\n",
"import pytesseract\n",
"\n",
"def get_text_img(path):\n",
" return pytesseract.image_to_string(Image.open(path)).replace(\"\\n\", \" \")\n",
"\n",
"logging.basicConfig()\n",
"logging.getLogger('langchain.retrievers.multi_query').setLevel(logging.INFO)\n",
"\n",
"base_path = os.path.join(os.getcwd(),\"db\")\n",
"key_openai =\"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\"\n",
"embedding = OpenAIEmbeddings(openai_api_key =key_openai)\n",
"\n",
"# import torch\n",
"# from transformers import AutoModelForCausalLM, AutoTokenizer\n",
"# from transformers.generation.utils import GenerationConfig\n",
"# tokenizer = AutoTokenizer.from_pretrained(\"/home/ubuntu/LLM/text-generation-webui/models/Flmc_DISC-MedLLM\", use_fast=False, trust_remote_code=True)\n",
"# model = AutoModelForCausalLM.from_pretrained(\"/home/ubuntu/LLM/text-generation-webui/models/Flmc_DISC-MedLLM\", device_map=\"auto\", torch_dtype=torch.float16, trust_remote_code=True)\n",
"# model.generation_config = GenerationConfig.from_pretrained(\"Flmc/DISC-MedLLM\")\n",
"\n",
"data_llm_16k = ChatOpenAI(\n",
" model_name=\"gpt-3.5-turbo-16k\",\n",
" temperature = 0,\n",
" openai_api_key=key_openai,\n",
" )\n",
"\n",
"data_llm = ChatOpenAI(\n",
" model_name=\"gpt-3.5-turbo\",\n",
" temperature = 0,\n",
" openai_api_key=key_openai,\n",
" )\n",
"\n",
"chain = load_summarize_chain(data_llm_16k, chain_type=\"stuff\")\n",
"\n",
"def get_qa_chain_answers_llm(question,email):\n",
" title = str(email)\n",
" persist_directory = os.path.join(base_path,title)\n",
" db = Chroma(persist_directory=persist_directory, embedding_function=embedding)\n",
" k_tops = db.similarity_search(question, k=3)\n",
" print(k_tops)\n",
" #question_new = f\" 'context' {k_tops}: '{question}'\"\n",
" #res = get_completion(question_new, 300, 0)\n",
" print(\"LLM MODEL------------------------------\")\n",
" messages = []\n",
" messages.append({\"role\": \"user\", \"content\": \"Hello the patient will provide you with the reports & other information regarding the paitent. You have to answer the questions based on the information provided and your knowledge. Next you will talk with the paitent\"})\n",
" model.chat(tokenizer, messages)\n",
" messages.append({\"role\": \"user\", \"content\": f\" Detials {k_tops} : & User Question {question}\"})\n",
" return model.chat(tokenizer, messages)\n",
"\n",
"# def get_qa_chain_answers(question,email,history=[]):\n",
"# title = str(email)\n",
"# persist_directory = os.path.join(base_path,title)\n",
"# db = Chroma(persist_directory=persist_directory, embedding_function=embedding)\n",
" \n",
"# # retriever_from_llm = MultiQueryRetriever.from_llm(retriever=db.as_retriever(),llm=data_llm)\n",
"# # unique_docs = retriever_from_llm.get_relevant_documents(query=question)\n",
"\n",
"# qa_chain = RetrievalQA.from_chain_type(data_llm_16k,retriever=db.as_retriever())\n",
"# question_updated = \"Act Like a Medical doctor and give suggestions based on the context given or your own knwoelege and question asked\" + question\n",
"# answers = qa_chain({\"query\": question_updated})\n",
"# return answers['result']\n",
" \n",
"def get_text(doc,file_name):\n",
" file_extension = os.path.splitext(file_name)[1].lower()\n",
" print(file_extension)\n",
" if file_extension == \".pdf\":\n",
" pdf = PyPDF2.PdfReader(doc)\n",
" pdf_text = \"\"\n",
" for page in pdf.pages:\n",
" pdf_text += page.extract_text()\n",
" return pdf_text\n",
" \n",
" elif file_extension == \".md\" or file_extension == \".txt\":\n",
" loader = TextLoader(doc)\n",
" elif file_extension in [\".docx\", \".doc\"]:\n",
" loader = Docx2txtLoader(doc)\n",
" elif file_extension == \".csv\":\n",
" loader = CSVLoader(file_path=doc)\n",
" elif file_extension in [\".xls\", \".xlsx\"]:\n",
" try:\n",
" df = pd.read_excel(doc, engine='openpyxl')\n",
" file_name = f\"{str(uuid.uuid1())}.csv\"\n",
" df.to_csv(file_name)\n",
" loader = CSVLoader(file_path=file_name)\n",
" except Exception as e:\n",
" print(e)\n",
" loader = UnstructuredExcelLoader(doc, mode=\"elements\")\n",
" documents = loader.load()\n",
" text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)\n",
" texts = text_splitter.split_documents(documents)\n",
" return texts\n",
" \n",
" elif file_extension == \".png\" or file_extension == \".jpg\" or file_extension == \".jpeg\":\n",
" texts = get_text_img(doc)\n",
" text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)\n",
" texts = text_splitter.create_documents(texts)\n",
" print(texts)\n",
" return texts\n",
" \n",
" else:\n",
" raise ValueError(f\"Unsupported file extension: {file_extension}\")\n",
"\n",
" documents = loader.load()\n",
" text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
" texts = text_splitter.split_documents(documents)\n",
"\n",
" return texts\n",
" \n",
"embedding = OpenAIEmbeddings(openai_api_key = \"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\")\n",
"\n",
"def upload_chroma(book_file,filename,email):\n",
" pbar = tqdm(total=100)\n",
" final_texts = get_text(book_file,filename)\n",
" pbar.update(40)\n",
" title = str(email)\n",
" persist_directory = os.path.join(base_path,title)\n",
" db = Chroma.from_documents(final_texts, embedding , persist_directory=persist_directory)\n",
" pbar.update(40)\n",
" db.persist()\n",
" logging.info(f\"Successfully uploaded the PDF of the book: {title}\")\n",
" print(f\"Successfully uploaded the PDF of the book: {title}\")\n",
" pbar.update(20)\n",
" pbar.close()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"doc = \"/home/ubuntu/LLM/.conda/om/medAlpaca/eval/section4_mobile_screen.png\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
".png\n"
]
}
],
"source": [
"file_extension = \".png\"\n",
"print(file_extension)\n",
"if file_extension == \".pdf\":\n",
" pdf = PyPDF2.PdfReader(doc)\n",
" pdf_text = \"\"\n",
" for page in pdf.pages:\n",
" pdf_text += page.extract_text()\n",
" \n",
"elif file_extension == \".md\" or file_extension == \".txt\":\n",
" loader = TextLoader(doc)\n",
"elif file_extension in [\".docx\", \".doc\"]:\n",
" loader = Docx2txtLoader(doc)\n",
"elif file_extension == \".csv\":\n",
" loader = CSVLoader(file_path=doc)\n",
"elif file_extension in [\".xls\", \".xlsx\"]:\n",
" try:\n",
" df = pd.read_excel(doc, engine='openpyxl')\n",
" file_name = f\"{str(uuid.uuid1())}.csv\"\n",
" df.to_csv(file_name)\n",
" loader = CSVLoader(file_path=file_name)\n",
" except Exception as e:\n",
" print(e)\n",
" loader = UnstructuredExcelLoader(doc, mode=\"elements\")\n",
" documents = loader.load()\n",
" text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)\n",
" texts = text_splitter.split_documents(documents)\n",
"\n",
"elif file_extension == \".png\" or file_extension == \".jpg\" or file_extension == \".jpeg\":\n",
" texts = get_text_img(doc)\n",
" text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)\n",
" texts = text_splitter.create_documents(texts)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Profile details Payal Tandon Female etd Seen Patient details Name Surname Date of Birth city Country Shared profile Rekha Singhn Tviews Ey Payal Tandon Luly 16, 1990 (30y) Mumbai India \\x0c'"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"texts = get_text_img(doc)\n",
"texts"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.schema.document import Document\n",
"\n",
"def get_text_chunks_langchain(text):\n",
" text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=100)\n",
" docs = [Document(page_content=x) for x in text_splitter.split_text(text)]\n",
" return docs"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='Profile details Payal Tandon Female etd Seen Patient details Name Surname Date of Birth city Country Shared profile Rekha Singhn Tviews Ey Payal Tandon Luly 16, 1990 (30y) Mumbai India', metadata={})]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"get_text_chunks_langchain(texts)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "med",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|