--- base_model: openlm-research/open_llama_3b_v2 library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: outputs/lora-out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: openlm-research/open_llama_3b_v2 model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: true load_in_4bit: false strict: false push_dataset_to_hub: datasets: - path: teknium/GPT4-LLM-Cleaned type: alpaca dataset_prepared_path: ./last_run_prepared val_set_size: 0.02 adapter: lora lora_model_dir: sequence_len: 1024 sample_packing: true lora_r: 8 lora_alpha: 16 lora_dropout: 0.0 lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lora_fan_in_fan_out: wandb_project: openllama-axolotl wandb_entity: ashrielbrian wandb_watch: wandb_name: wandb_log_model: output_dir: ./outputs/lora-out gradient_accumulation_steps: 1 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit torchdistx_path: lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: false fp16: true tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: ./outputs/lora-out/checkpoint-10762 local_rank: logging_steps: 1 xformers_attention: flash_attention: true gptq_groupsize: s2_attention: gptq_model_v1: warmup_steps: 20 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

[Visualize in Weights & Biases](https://wandb.ai/ashrielbrian/openllama-axolotl/runs/y4gkw5cu) # outputs/lora-out This model is a fine-tuned version of [openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0423 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 1.4066 | 0.0002 | 1 | 1.6832 | | 0.9583 | 0.2501 | 1346 | 1.1052 | | 1.0801 | 0.5003 | 2692 | 1.0731 | | 0.8311 | 0.7504 | 4038 | 1.0377 | | 0.9795 | 1.0006 | 5384 | 1.0241 | | 0.9849 | 1.2334 | 6730 | 1.0143 | | 1.1134 | 1.4836 | 8076 | 1.0098 | | 0.916 | 1.7337 | 9422 | 1.0073 | | 0.8791 | 2.0011 | 10768 | 1.0076 | | 1.1143 | 2.2513 | 12114 | 1.0257 | | 1.1426 | 2.5014 | 13460 | 1.0169 | | 1.0163 | 2.7515 | 14806 | 1.0169 | | 0.8814 | 3.0017 | 16152 | 1.0085 | | 0.8806 | 3.2338 | 17498 | 1.0438 | | 0.9132 | 3.4839 | 18844 | 1.0442 | | 0.7981 | 3.7341 | 20190 | 1.0423 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1