asigalov61
commited on
Upload MIDIstral_pixtral_fine_tune_code.ipynb
Browse files
code/MIDIstral_pixtral_fine_tune_code.ipynb
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"***\n",
|
8 |
+
"\n",
|
9 |
+
"# MIDIstral Pixtral 12B Fine-Tuning Code\n",
|
10 |
+
"\n",
|
11 |
+
"***\n",
|
12 |
+
"\n",
|
13 |
+
"## Based upon fine-tuning code by Tomasz Stankiewicz\n",
|
14 |
+
"\n",
|
15 |
+
"## https://github.com/tomstaan/Clarivex-Pixtral-12B\n",
|
16 |
+
"\n",
|
17 |
+
"***\n",
|
18 |
+
"\n",
|
19 |
+
"### Project Los Angeles\n",
|
20 |
+
"### Tegridy Code 2024\n",
|
21 |
+
"\n",
|
22 |
+
"***"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "markdown",
|
27 |
+
"metadata": {},
|
28 |
+
"source": [
|
29 |
+
"# Setup"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"cell_type": "code",
|
34 |
+
"execution_count": null,
|
35 |
+
"metadata": {},
|
36 |
+
"outputs": [],
|
37 |
+
"source": [
|
38 |
+
"!python3 -m pip install --upgrade pip -q\n",
|
39 |
+
"!pip3 install -U transformers\n",
|
40 |
+
"!pip3 install -q accelerate datasets peft bitsandbytes hf_transfer flash_attn tensorboard\n",
|
41 |
+
"!pip3 install ipywidgets\n",
|
42 |
+
"!pip3 install --upgrade jinja2\n",
|
43 |
+
"!pip3 install --upgrade peft\n",
|
44 |
+
"!pip3 install -U pillow\n",
|
45 |
+
"!pip3 install pip install tf-keras\n",
|
46 |
+
"\n",
|
47 |
+
"# Can be a good idea to re-start the kernel after this"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "code",
|
52 |
+
"execution_count": null,
|
53 |
+
"metadata": {},
|
54 |
+
"outputs": [],
|
55 |
+
"source": [
|
56 |
+
"!sudo pip3 install tf-keras"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "code",
|
61 |
+
"execution_count": null,
|
62 |
+
"metadata": {},
|
63 |
+
"outputs": [],
|
64 |
+
"source": [
|
65 |
+
"!sudo pip install -U numpy==1.26.1"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"cell_type": "code",
|
70 |
+
"execution_count": null,
|
71 |
+
"metadata": {},
|
72 |
+
"outputs": [],
|
73 |
+
"source": [
|
74 |
+
"# Enable fast weights download and upload\n",
|
75 |
+
"import os\n",
|
76 |
+
"os.environ[\"HF_HUB_ENABLE_HF_TRANSFER\"] = \"1\""
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "markdown",
|
81 |
+
"metadata": {},
|
82 |
+
"source": [
|
83 |
+
"# Download model"
|
84 |
+
]
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"cell_type": "code",
|
88 |
+
"execution_count": null,
|
89 |
+
"metadata": {},
|
90 |
+
"outputs": [],
|
91 |
+
"source": [
|
92 |
+
"import torch\n",
|
93 |
+
"from PIL import Image\n",
|
94 |
+
"from transformers import AutoProcessor, LlavaForConditionalGeneration\n",
|
95 |
+
"from transformers import BitsAndBytesConfig\n",
|
96 |
+
"\n",
|
97 |
+
"model_id = \"mistral-community/pixtral-12b\"\n",
|
98 |
+
"\n",
|
99 |
+
"model = LlavaForConditionalGeneration.from_pretrained(\n",
|
100 |
+
" model_id,\n",
|
101 |
+
" torch_dtype=torch.bfloat16,\n",
|
102 |
+
" device_map='auto',\n",
|
103 |
+
" #attn_implementation=\"sdpa\",\n",
|
104 |
+
")\n",
|
105 |
+
"\n",
|
106 |
+
"processor = AutoProcessor.from_pretrained(model_id)\n",
|
107 |
+
"\n",
|
108 |
+
"# Extract the tokenizer from the processor\n",
|
109 |
+
"tokenizer = processor.tokenizer\n",
|
110 |
+
"\n",
|
111 |
+
"# Set the padding side to 'left' for Flash Attention compatibility\n",
|
112 |
+
"tokenizer.padding_side = \"left\""
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "markdown",
|
117 |
+
"metadata": {},
|
118 |
+
"source": [
|
119 |
+
"# Chat Template"
|
120 |
+
]
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"cell_type": "code",
|
124 |
+
"execution_count": null,
|
125 |
+
"metadata": {},
|
126 |
+
"outputs": [],
|
127 |
+
"source": [
|
128 |
+
"CHAT_TEMPLATE = \"\"\"\n",
|
129 |
+
"{%- for message in messages %} \n",
|
130 |
+
" {%- if message.role == \"user\" %} \n",
|
131 |
+
" <s>[INST] \n",
|
132 |
+
" {%- for item in message.content %} \n",
|
133 |
+
" {%- if item.type == \"text\" %} \n",
|
134 |
+
" {{ item.text }} \n",
|
135 |
+
" {%- elif item.type == \"image\" %} \n",
|
136 |
+
" \\n[IMG] \n",
|
137 |
+
" {%- endif %} \n",
|
138 |
+
" {%- endfor %} \n",
|
139 |
+
" [/INST] \n",
|
140 |
+
" {%- elif message.role == \"assistant\" %} \n",
|
141 |
+
" {%- for item in message.content %} \n",
|
142 |
+
" {%- if item.type == \"text\" %} \n",
|
143 |
+
" {{ item.text }} \n",
|
144 |
+
" {%- endif %} \n",
|
145 |
+
" {%- endfor %} \n",
|
146 |
+
" </s>\n",
|
147 |
+
" {%- endif %} \n",
|
148 |
+
"{%- endfor %} \n",
|
149 |
+
"\"\"\"\n",
|
150 |
+
"\n",
|
151 |
+
"# Set the chat template for the tokenizer\n",
|
152 |
+
"processor.chat_template = CHAT_TEMPLATE.replace(' ', '')\n",
|
153 |
+
"\n",
|
154 |
+
"processor.tokenizer.pad_token = processor.tokenizer.eos_token"
|
155 |
+
]
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"cell_type": "code",
|
159 |
+
"execution_count": null,
|
160 |
+
"metadata": {},
|
161 |
+
"outputs": [],
|
162 |
+
"source": [
|
163 |
+
"# Example conversation input with user and assistant roles\n",
|
164 |
+
"messages = [\n",
|
165 |
+
" {\n",
|
166 |
+
" \"role\": \"user\",\n",
|
167 |
+
" \"content\": [\n",
|
168 |
+
" {\"type\": \"text\", \"text\": \"Please describe the song music in detail. Thank you.\"},\n",
|
169 |
+
" {\"type\": \"image\"}\n",
|
170 |
+
" ]\n",
|
171 |
+
" },\n",
|
172 |
+
" {\n",
|
173 |
+
" \"role\": \"assistant\",\n",
|
174 |
+
" \"content\": [\n",
|
175 |
+
" {\"type\": \"text\", \"text\": \"The song 'Man In Black' by Johnny Cash in key A# has fast tempo and average pace with Acoustic Guitar(steel) lead, accompanying Acoustic Grand and predominant Acoustic Snare drums\"}\n",
|
176 |
+
" ]\n",
|
177 |
+
" }\n",
|
178 |
+
"]\n",
|
179 |
+
"\n",
|
180 |
+
"# Apply the chat template to format the messages\n",
|
181 |
+
"formatted_text = processor.apply_chat_template(messages, add_generation_prompt=False)\n",
|
182 |
+
"\n",
|
183 |
+
"# Output the formatted text\n",
|
184 |
+
"print(\"Formatted text:\\n\", formatted_text)"
|
185 |
+
]
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"cell_type": "markdown",
|
189 |
+
"metadata": {},
|
190 |
+
"source": [
|
191 |
+
"# Download dataset"
|
192 |
+
]
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"cell_type": "code",
|
196 |
+
"execution_count": null,
|
197 |
+
"metadata": {},
|
198 |
+
"outputs": [],
|
199 |
+
"source": [
|
200 |
+
"from PIL import Image\n",
|
201 |
+
"import io\n",
|
202 |
+
"from datasets import load_dataset\n",
|
203 |
+
"\n",
|
204 |
+
"def deserialize_image(byte_data):\n",
|
205 |
+
" img_byte_arr = io.BytesIO(byte_data)\n",
|
206 |
+
" img = Image.open(img_byte_arr)\n",
|
207 |
+
" return img\n",
|
208 |
+
"\n",
|
209 |
+
"dataset = load_dataset(\"asigalov61/MIDIstral\", split='train').train_test_split(test_size=0.001)\n",
|
210 |
+
"\n",
|
211 |
+
"# Access the training and test sets\n",
|
212 |
+
"train_dataset = dataset[\"train\"]\n",
|
213 |
+
"eval_dataset = dataset[\"test\"]"
|
214 |
+
]
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"cell_type": "code",
|
218 |
+
"execution_count": null,
|
219 |
+
"metadata": {},
|
220 |
+
"outputs": [],
|
221 |
+
"source": [
|
222 |
+
"len(train_dataset)"
|
223 |
+
]
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"cell_type": "code",
|
227 |
+
"execution_count": null,
|
228 |
+
"metadata": {},
|
229 |
+
"outputs": [],
|
230 |
+
"source": [
|
231 |
+
"eval_dataset[0]"
|
232 |
+
]
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"cell_type": "markdown",
|
236 |
+
"metadata": {},
|
237 |
+
"source": [
|
238 |
+
"# Evaluation before fine-tuning"
|
239 |
+
]
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"cell_type": "code",
|
243 |
+
"execution_count": null,
|
244 |
+
"metadata": {},
|
245 |
+
"outputs": [],
|
246 |
+
"source": [
|
247 |
+
"import torch\n",
|
248 |
+
"from PIL import Image\n",
|
249 |
+
"from torchvision.transforms.functional import to_pil_image, resize\n",
|
250 |
+
"\n",
|
251 |
+
"def run_model_evaluation(model, dataset, num_samples=None, device='cuda', constant_query=None):\n",
|
252 |
+
" model.eval()\n",
|
253 |
+
" results = []\n",
|
254 |
+
"\n",
|
255 |
+
" # Limit the dataset if a specific number of samples is provided\n",
|
256 |
+
" if num_samples is not None:\n",
|
257 |
+
" dataset = torch.utils.data.Subset(dataset, range(num_samples))\n",
|
258 |
+
"\n",
|
259 |
+
" for example in dataset:\n",
|
260 |
+
" image = deserialize_image(example[\"image\"])\n",
|
261 |
+
" if constant_query is None:\n",
|
262 |
+
" query = example[\"query\"][\"en\"]\n",
|
263 |
+
" else:\n",
|
264 |
+
" query = constant_query # Use the constant query if provided\n",
|
265 |
+
" \n",
|
266 |
+
" # Display a reduced size version of the image\n",
|
267 |
+
" pil_image = image\n",
|
268 |
+
" aspect_ratio = pil_image.width / pil_image.height\n",
|
269 |
+
" new_width = 300\n",
|
270 |
+
" new_height = int(new_width / aspect_ratio)\n",
|
271 |
+
" display_image = resize(pil_image, (new_height, new_width))\n",
|
272 |
+
" display_image.show() # This will open the image in the default image viewer\n",
|
273 |
+
"\n",
|
274 |
+
" # Construct the message template\n",
|
275 |
+
" messages = [\n",
|
276 |
+
" {\n",
|
277 |
+
" \"role\": \"user\",\n",
|
278 |
+
" \"content\": [\n",
|
279 |
+
" # {\"type\": \"text\", \"text\": \"Answer briefly.\"},\n",
|
280 |
+
" {\"type\": \"text\", \"text\": query},\n",
|
281 |
+
" {\"type\": \"image\"}, # YOU CAN COMMENT THIS OUT IF THERE ARE NO IMAGES\n",
|
282 |
+
" # {\"type\": \"image\"}, # ADD A SECOND IMAGE!!! Note that the text is also possible here.\n",
|
283 |
+
" ]\n",
|
284 |
+
" }\n",
|
285 |
+
" ]\n",
|
286 |
+
"\n",
|
287 |
+
" # Apply the chat template to preprocess input\n",
|
288 |
+
" formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)\n",
|
289 |
+
" print(f\"Formatted prompt: {formatted_prompt}\")\n",
|
290 |
+
" text = processor.apply_chat_template(messages, add_generation_prompt=True)\n",
|
291 |
+
" inputs = processor(text=[text.strip()], images=[image], return_tensors=\"pt\", padding=True).to(device)\n",
|
292 |
+
" # inputs = processor(text=[text.strip()], images=[image, image2], return_tensors=\"pt\" padding=True).to(device)\n",
|
293 |
+
"\n",
|
294 |
+
" # Generate output from the model\n",
|
295 |
+
" generated_ids = model.generate(**inputs, max_new_tokens=64)\n",
|
296 |
+
" generated_texts = processor.batch_decode(generated_ids[:, inputs[\"input_ids\"].shape[-1]:])\n",
|
297 |
+
"\n",
|
298 |
+
" print(f\"Prediction: {generated_texts[0]}\\n\")\n",
|
299 |
+
"\n",
|
300 |
+
" results.append(generated_texts[0]) # Store the result\n",
|
301 |
+
"\n",
|
302 |
+
" return results\n",
|
303 |
+
"\n",
|
304 |
+
"\n"
|
305 |
+
]
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"cell_type": "code",
|
309 |
+
"execution_count": null,
|
310 |
+
"metadata": {},
|
311 |
+
"outputs": [],
|
312 |
+
"source": [
|
313 |
+
"# Usage\n",
|
314 |
+
"eval_results_before_fine_tuning = run_model_evaluation(model, \n",
|
315 |
+
" eval_dataset, \n",
|
316 |
+
" num_samples=2, \n",
|
317 |
+
" device='cuda', \n",
|
318 |
+
" constant_query='Please describe the song music in detail. Thank you.')\n",
|
319 |
+
"\n",
|
320 |
+
"print('eval_results_before_fine_tuning:', eval_results_before_fine_tuning)"
|
321 |
+
]
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"cell_type": "markdown",
|
325 |
+
"metadata": {},
|
326 |
+
"source": [
|
327 |
+
"# Fine-tuning"
|
328 |
+
]
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"cell_type": "code",
|
332 |
+
"execution_count": null,
|
333 |
+
"metadata": {},
|
334 |
+
"outputs": [],
|
335 |
+
"source": [
|
336 |
+
"import torch\n",
|
337 |
+
"\n",
|
338 |
+
"class MyDataCollator:\n",
|
339 |
+
" def __init__(self, processor):\n",
|
340 |
+
" self.processor = processor\n",
|
341 |
+
"\n",
|
342 |
+
" def __call__(self, examples):\n",
|
343 |
+
" texts = []\n",
|
344 |
+
" images = []\n",
|
345 |
+
" assistant_responses = [] # To track assistant responses for proper masking\n",
|
346 |
+
" for example in examples:\n",
|
347 |
+
" image = deserialize_image(example[\"image\"])\n",
|
348 |
+
" question = example[\"question\"] # for chess dataset\n",
|
349 |
+
" answer = example[\"answer\"] # for chess dataset\n",
|
350 |
+
"\n",
|
351 |
+
" messages = [\n",
|
352 |
+
" {\n",
|
353 |
+
" \"role\": \"user\",\n",
|
354 |
+
" \"content\": [\n",
|
355 |
+
" {\"type\": \"text\", \"text\": question},\n",
|
356 |
+
" {\"type\": \"image\"}, # Images after the text.\n",
|
357 |
+
" ]\n",
|
358 |
+
" },\n",
|
359 |
+
" {\n",
|
360 |
+
" \"role\": \"assistant\",\n",
|
361 |
+
" \"content\": [\n",
|
362 |
+
" {\"type\": \"text\", \"text\": answer}\n",
|
363 |
+
" ]\n",
|
364 |
+
" }\n",
|
365 |
+
" ]\n",
|
366 |
+
"\n",
|
367 |
+
" # Convert messages to the desired text format using processor's template\n",
|
368 |
+
" text = self.processor.apply_chat_template(messages, add_generation_prompt=False)\n",
|
369 |
+
"\n",
|
370 |
+
" texts.append(text.strip())\n",
|
371 |
+
" images.append([image])\n",
|
372 |
+
" assistant_responses.append(answer) # Track assistant's response for later use\n",
|
373 |
+
"\n",
|
374 |
+
" # Tokenize and process batch\n",
|
375 |
+
" batch = self.processor(text=texts, images=images, return_tensors=\"pt\", padding=True)\n",
|
376 |
+
"\n",
|
377 |
+
" # Prepare labels; we will mask non-assistant tokens for generation\n",
|
378 |
+
" labels = batch[\"input_ids\"].clone() \n",
|
379 |
+
"\n",
|
380 |
+
" # For each example, find assistant tokens and mask everything else\n",
|
381 |
+
" for i, (input_ids, assistant_response) in enumerate(zip(batch[\"input_ids\"], assistant_responses)):\n",
|
382 |
+
" # Tokenize just the assistant response\n",
|
383 |
+
" assistant_tokens = self.processor.tokenizer(assistant_response, return_tensors=\"pt\")[\"input_ids\"][0]\n",
|
384 |
+
"\n",
|
385 |
+
" # Find where the assistant tokens start in the input sequence\n",
|
386 |
+
" start_idx = self.find_subsequence(input_ids, assistant_tokens)\n",
|
387 |
+
"\n",
|
388 |
+
" if start_idx is not None:\n",
|
389 |
+
" # Mask everything except the assistant tokens\n",
|
390 |
+
" labels[i, :start_idx] = -100 # Ignore everything before the assistant's response\n",
|
391 |
+
" labels[i, start_idx + len(assistant_tokens):] = -100 # Ignore everything after\n",
|
392 |
+
"\n",
|
393 |
+
" # Assign masked labels back to the batch\n",
|
394 |
+
" batch[\"labels\"] = labels\n",
|
395 |
+
"\n",
|
396 |
+
" return batch\n",
|
397 |
+
" \n",
|
398 |
+
" def find_subsequence(self, sequence, subsequence):\n",
|
399 |
+
" \"\"\"\n",
|
400 |
+
" Find the start index of a subsequence (assistant tokens) in a sequence (input tokens).\n",
|
401 |
+
" \"\"\"\n",
|
402 |
+
" seq_len = len(sequence)\n",
|
403 |
+
" sub_len = len(subsequence)\n",
|
404 |
+
"\n",
|
405 |
+
" for i in range(seq_len - sub_len + 1):\n",
|
406 |
+
" if torch.equal(sequence[i:i + sub_len], subsequence):\n",
|
407 |
+
" return i\n",
|
408 |
+
" return None\n",
|
409 |
+
" \n",
|
410 |
+
"data_collator = MyDataCollator(processor)"
|
411 |
+
]
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"cell_type": "code",
|
415 |
+
"execution_count": null,
|
416 |
+
"metadata": {},
|
417 |
+
"outputs": [],
|
418 |
+
"source": [
|
419 |
+
"import torch\n",
|
420 |
+
"\n",
|
421 |
+
"# Select a small batch of examples (e.g., 2 examples for quick testing)\n",
|
422 |
+
"sample_batch = [train_dataset[i] for i in range(2)]\n",
|
423 |
+
"\n",
|
424 |
+
"# Call the data collator with the sample batch to process it\n",
|
425 |
+
"processed_batch = data_collator(sample_batch)\n",
|
426 |
+
"\n",
|
427 |
+
"# Print the processed batch keys to check what's inside\n",
|
428 |
+
"print(\"Processed batch keys:\", processed_batch.keys())\n",
|
429 |
+
"\n",
|
430 |
+
"# Print out the texts after applying the chat template\n",
|
431 |
+
"print(\"\\nTokenized input IDs (before padding):\")\n",
|
432 |
+
"print(processed_batch[\"input_ids\"])"
|
433 |
+
]
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"cell_type": "code",
|
437 |
+
"execution_count": null,
|
438 |
+
"metadata": {},
|
439 |
+
"outputs": [],
|
440 |
+
"source": [
|
441 |
+
"processed_batch[\"input_ids\"].shape"
|
442 |
+
]
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"cell_type": "code",
|
446 |
+
"execution_count": null,
|
447 |
+
"metadata": {},
|
448 |
+
"outputs": [],
|
449 |
+
"source": [
|
450 |
+
"print(model)"
|
451 |
+
]
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"cell_type": "code",
|
455 |
+
"execution_count": null,
|
456 |
+
"metadata": {},
|
457 |
+
"outputs": [],
|
458 |
+
"source": [
|
459 |
+
"from peft import LoraConfig\n",
|
460 |
+
"\n",
|
461 |
+
"lora_config = LoraConfig(\n",
|
462 |
+
" r=32, # Rank (usually 8, 16, or 32 depending on model size and needs)\n",
|
463 |
+
" lora_alpha=32, # Scaling factor for the low-rank updates\n",
|
464 |
+
" use_rslora=True, # Use RS LoRA for regularization\n",
|
465 |
+
" target_modules=\"all-linear\", # Target specific modules (e.g., linear layers)\n",
|
466 |
+
" # modules_to_save=['lm_head','embed_tokens'],\n",
|
467 |
+
" lora_dropout=0.1, # Dropout for low-rank adapter layers\n",
|
468 |
+
" bias=\"none\", # Bias in adapter layers: \"none\", \"all\", \"lora_only\"\n",
|
469 |
+
" task_type=\"CAUSAL_LM\" # Task type: \"CAUSAL_LM\", \"SEQ_2_SEQ_LM\", or \"TOKEN_CLS\"\n",
|
470 |
+
")"
|
471 |
+
]
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"cell_type": "code",
|
475 |
+
"execution_count": null,
|
476 |
+
"metadata": {},
|
477 |
+
"outputs": [],
|
478 |
+
"source": [
|
479 |
+
"from peft import get_peft_model\n",
|
480 |
+
"\n",
|
481 |
+
"model=get_peft_model(model, lora_config)"
|
482 |
+
]
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"cell_type": "code",
|
486 |
+
"execution_count": null,
|
487 |
+
"metadata": {},
|
488 |
+
"outputs": [],
|
489 |
+
"source": [
|
490 |
+
"model.print_trainable_parameters()"
|
491 |
+
]
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"cell_type": "code",
|
495 |
+
"execution_count": null,
|
496 |
+
"metadata": {},
|
497 |
+
"outputs": [],
|
498 |
+
"source": [
|
499 |
+
"from transformers import TrainingArguments, Trainer\n",
|
500 |
+
"\n",
|
501 |
+
"# for main fine-tuning\n",
|
502 |
+
"epochs = 1\n",
|
503 |
+
"lr = 3e-5\n",
|
504 |
+
"schedule = \"constant\"\n",
|
505 |
+
"\n",
|
506 |
+
"# Optional, for annealing\n",
|
507 |
+
"# epochs = 0.4\n",
|
508 |
+
"# lr = 3e-5\n",
|
509 |
+
"# schedule = \"linear\"\n",
|
510 |
+
"\n",
|
511 |
+
"run_name = f\"MIDIstral-{lr}_lr-{epochs}_epochs-{schedule}_schedule\"\n",
|
512 |
+
"\n",
|
513 |
+
"training_args = TrainingArguments(\n",
|
514 |
+
" # max_steps=1, # Optional: run only for one step, useful for debugging\n",
|
515 |
+
" num_train_epochs=epochs, # Number of training epochs\n",
|
516 |
+
" per_device_train_batch_size=8, # Batch size per device for training\n",
|
517 |
+
" per_device_eval_batch_size=8, # Batch size per device for evaluation\n",
|
518 |
+
" gradient_accumulation_steps=1, # Number of steps to accumulate gradients before updating\n",
|
519 |
+
" # warmup_steps=10, # Optional: number of warmup steps (uncomment if needed)\n",
|
520 |
+
" learning_rate=lr, # Learning rate for the optimizer\n",
|
521 |
+
" weight_decay=0.01, # Weight decay to apply (for regularization)\n",
|
522 |
+
" logging_steps=0.001, # Log training progress every 0.1 steps\n",
|
523 |
+
" output_dir=\"MIDIstral_pixtral\", # Directory where the fine-tuned model will be saved. Make sure it has pixtral in a name\n",
|
524 |
+
" eval_strategy=\"steps\", # Strategy for evaluation: perform evaluation every few steps\n",
|
525 |
+
" eval_steps=0.02, # Perform evaluation every 0.2 steps (relative to total steps)\n",
|
526 |
+
" lr_scheduler_type=schedule, # Set learning rate scheduler type\n",
|
527 |
+
" # save_strategy=\"steps\", # Optional: save model every few steps (commented out)\n",
|
528 |
+
" # save_steps=250, # Optional: how many steps between saves (commented out)\n",
|
529 |
+
" # save_total_limit=1, # Optional: total number of checkpoints to keep (commented out)\n",
|
530 |
+
" bf16=True, # Use bf16 precision for training\n",
|
531 |
+
" remove_unused_columns=False, # Do not remove unused columns from the dataset\n",
|
532 |
+
" report_to=\"tensorboard\", # Report results to TensorBoard for visualization\n",
|
533 |
+
" run_name=run_name, # Set the run name for tracking experiments\n",
|
534 |
+
" logging_dir=f\"./logs/{run_name}\", # Directory for logging\n",
|
535 |
+
" gradient_checkpointing=True, # Enable gradient checkpointing to save VRAM\n",
|
536 |
+
" gradient_checkpointing_kwargs={'use_reentrant': True} # Additional settings for gradient checkpointing\n",
|
537 |
+
")\n",
|
538 |
+
"\n",
|
539 |
+
"\n",
|
540 |
+
"trainer = Trainer(\n",
|
541 |
+
" model=model, # The model to be trained\n",
|
542 |
+
" args=training_args, # Training arguments defined earlier\n",
|
543 |
+
" data_collator=data_collator, # Data collator to handle batches\n",
|
544 |
+
" train_dataset=train_dataset, # Training dataset\n",
|
545 |
+
" eval_dataset=eval_dataset, # Evaluation dataset for computing loss or metrics\n",
|
546 |
+
")"
|
547 |
+
]
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"cell_type": "code",
|
551 |
+
"execution_count": null,
|
552 |
+
"metadata": {},
|
553 |
+
"outputs": [],
|
554 |
+
"source": [
|
555 |
+
"trainer.train()"
|
556 |
+
]
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"cell_type": "code",
|
560 |
+
"execution_count": null,
|
561 |
+
"metadata": {},
|
562 |
+
"outputs": [],
|
563 |
+
"source": [
|
564 |
+
"trainer.save_model('./MIDIstral/')"
|
565 |
+
]
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"cell_type": "code",
|
569 |
+
"execution_count": null,
|
570 |
+
"metadata": {},
|
571 |
+
"outputs": [],
|
572 |
+
"source": [
|
573 |
+
"trainer.push_to_hub(token='your-auth-token-here')"
|
574 |
+
]
|
575 |
+
},
|
576 |
+
{
|
577 |
+
"cell_type": "code",
|
578 |
+
"execution_count": null,
|
579 |
+
"metadata": {},
|
580 |
+
"outputs": [],
|
581 |
+
"source": [
|
582 |
+
"processor.push_to_hub(\"asigalov61/MIDIstral_pixtral\", token='your-auth-token-here')"
|
583 |
+
]
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"cell_type": "markdown",
|
587 |
+
"metadata": {},
|
588 |
+
"source": [
|
589 |
+
"# Inference"
|
590 |
+
]
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"cell_type": "code",
|
594 |
+
"execution_count": null,
|
595 |
+
"metadata": {},
|
596 |
+
"outputs": [],
|
597 |
+
"source": [
|
598 |
+
"from transformers import LlavaForConditionalGeneration, AutoProcessor\n",
|
599 |
+
"import torch\n",
|
600 |
+
"\n",
|
601 |
+
"model = LlavaForConditionalGeneration.from_pretrained(\n",
|
602 |
+
" 'asigalov61/MIDIstral_pixtral',\n",
|
603 |
+
" torch_dtype=torch.bfloat16, # Adjust dtype if needed\n",
|
604 |
+
" device_map='auto'\n",
|
605 |
+
")\n",
|
606 |
+
"processor = AutoProcessor.from_pretrained('asigalov61/MIDIstral_pixtral')\n",
|
607 |
+
"tokenizer = processor.tokenizer\n",
|
608 |
+
"tokenizer.padding_side = \"left\" # For Flash Attention compatibility\n",
|
609 |
+
"\n",
|
610 |
+
"print(\"Model and processor loaded successfully from checkpoint-30.\")"
|
611 |
+
]
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"cell_type": "markdown",
|
615 |
+
"metadata": {},
|
616 |
+
"source": [
|
617 |
+
"Evaluation"
|
618 |
+
]
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"cell_type": "code",
|
622 |
+
"execution_count": null,
|
623 |
+
"metadata": {},
|
624 |
+
"outputs": [],
|
625 |
+
"source": [
|
626 |
+
"eval_results_after_fine_tuning = run_model_evaluation(model, eval_dataset, num_samples=5, device='cuda', constant_query='Please write the most appropriate lyrics for the song. Thank you.')\n",
|
627 |
+
"\n",
|
628 |
+
"print('eval_results_before_fine_tuning:', eval_results_before_fine_tuning)\n",
|
629 |
+
"print('eval_results_after_fine_tuning:', eval_results_after_fine_tuning)"
|
630 |
+
]
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"cell_type": "code",
|
634 |
+
"execution_count": null,
|
635 |
+
"metadata": {},
|
636 |
+
"outputs": [],
|
637 |
+
"source": [
|
638 |
+
"eval_dataset[0]"
|
639 |
+
]
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"cell_type": "code",
|
643 |
+
"execution_count": null,
|
644 |
+
"metadata": {},
|
645 |
+
"outputs": [],
|
646 |
+
"source": [
|
647 |
+
"with open('eval_results.txt', 'w') as f:\n",
|
648 |
+
" f.write('eval_results_before_fine_tuning: ' + str(eval_results_before_fine_tuning) + '\\n')\n",
|
649 |
+
" f.write('eval_results_after_fine_tuning: ' + str(eval_results_after_fine_tuning) + '\\n')"
|
650 |
+
]
|
651 |
+
}
|
652 |
+
],
|
653 |
+
"metadata": {
|
654 |
+
"kernelspec": {
|
655 |
+
"display_name": "Python 3 (ipykernel)",
|
656 |
+
"language": "python",
|
657 |
+
"name": "python3"
|
658 |
+
},
|
659 |
+
"language_info": {
|
660 |
+
"codemirror_mode": {
|
661 |
+
"name": "ipython",
|
662 |
+
"version": 3
|
663 |
+
},
|
664 |
+
"file_extension": ".py",
|
665 |
+
"mimetype": "text/x-python",
|
666 |
+
"name": "python",
|
667 |
+
"nbconvert_exporter": "python",
|
668 |
+
"pygments_lexer": "ipython3",
|
669 |
+
"version": "3.12.7"
|
670 |
+
}
|
671 |
+
},
|
672 |
+
"nbformat": 4,
|
673 |
+
"nbformat_minor": 4
|
674 |
+
}
|