aspenita commited on
Commit
fc6f3ef
1 Parent(s): 911068f

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,818 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: llama3
5
+ tags:
6
+ - facebook
7
+ - meta
8
+ - pytorch
9
+ - llama
10
+ - llama-3
11
+ - autoquant
12
+ - awq
13
+ pipeline_tag: text-generation
14
+ extra_gated_prompt: "### META LLAMA 3 COMMUNITY LICENSE AGREEMENT\nMeta Llama 3 Version\
15
+ \ Release Date: April 18, 2024\n\"Agreement\" means the terms and conditions for\
16
+ \ use, reproduction, distribution and modification of the Llama Materials set forth\
17
+ \ herein.\n\"Documentation\" means the specifications, manuals and documentation\
18
+ \ accompanying Meta Llama 3 distributed by Meta at https://llama.meta.com/get-started/.\n\
19
+ \"Licensee\" or \"you\" means you, or your employer or any other person or entity\
20
+ \ (if you are entering into this Agreement on such person or entity’s behalf), of\
21
+ \ the age required under applicable laws, rules or regulations to provide legal\
22
+ \ consent and that has legal authority to bind your employer or such other person\
23
+ \ or entity if you are entering in this Agreement on their behalf.\n\"Meta Llama\
24
+ \ 3\" means the foundational large language models and software and algorithms,\
25
+ \ including machine-learning model code, trained model weights, inference-enabling\
26
+ \ code, training-enabling code, fine-tuning enabling code and other elements of\
27
+ \ the foregoing distributed by Meta at https://llama.meta.com/llama-downloads.\n\
28
+ \"Llama Materials\" means, collectively, Meta’s proprietary Meta Llama 3 and Documentation\
29
+ \ (and any portion thereof) made available under this Agreement.\n\"Meta\" or \"\
30
+ we\" means Meta Platforms Ireland Limited (if you are located in or, if you are\
31
+ \ an entity, your principal place of business is in the EEA or Switzerland) and\
32
+ \ Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).\n\
33
+ \ \n1. License Rights and Redistribution.\na. Grant of Rights. You are granted\
34
+ \ a non-exclusive, worldwide, non-transferable and royalty-free limited license\
35
+ \ under Meta’s intellectual property or other rights owned by Meta embodied in the\
36
+ \ Llama Materials to use, reproduce, distribute, copy, create derivative works of,\
37
+ \ and make modifications to the Llama Materials.\nb. Redistribution and Use.\ni.\
38
+ \ If you distribute or make available the Llama Materials (or any derivative works\
39
+ \ thereof), or a product or service that uses any of them, including another AI\
40
+ \ model, you shall (A) provide a copy of this Agreement with any such Llama Materials;\
41
+ \ and (B) prominently display “Built with Meta Llama 3” on a related website, user\
42
+ \ interface, blogpost, about page, or product documentation. If you use the Llama\
43
+ \ Materials to create, train, fine tune, or otherwise improve an AI model, which\
44
+ \ is distributed or made available, you shall also include “Llama 3” at the beginning\
45
+ \ of any such AI model name.\nii. If you receive Llama Materials, or any derivative\
46
+ \ works thereof, from a Licensee as part of an integrated end user product, then\
47
+ \ Section 2 of this Agreement will not apply to you.\niii. You must retain in all\
48
+ \ copies of the Llama Materials that you distribute the following attribution notice\
49
+ \ within a “Notice” text file distributed as a part of such copies: “Meta Llama\
50
+ \ 3 is licensed under the Meta Llama 3 Community License, Copyright © Meta Platforms,\
51
+ \ Inc. All Rights Reserved.”\niv. Your use of the Llama Materials must comply with\
52
+ \ applicable laws and regulations (including trade compliance laws and regulations)\
53
+ \ and adhere to the Acceptable Use Policy for the Llama Materials (available at\
54
+ \ https://llama.meta.com/llama3/use-policy), which is hereby incorporated by reference\
55
+ \ into this Agreement.\nv. You will not use the Llama Materials or any output or\
56
+ \ results of the Llama Materials to improve any other large language model (excluding\
57
+ \ Meta Llama 3 or derivative works thereof).\n2. Additional Commercial Terms. If,\
58
+ \ on the Meta Llama 3 version release date, the monthly active users of the products\
59
+ \ or services made available by or for Licensee, or Licensee’s affiliates, is greater\
60
+ \ than 700 million monthly active users in the preceding calendar month, you must\
61
+ \ request a license from Meta, which Meta may grant to you in its sole discretion,\
62
+ \ and you are not authorized to exercise any of the rights under this Agreement\
63
+ \ unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer\
64
+ \ of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT\
65
+ \ AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF\
66
+ \ ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED,\
67
+ \ INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY,\
68
+ \ OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING\
69
+ \ THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME\
70
+ \ ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n\
71
+ 4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER\
72
+ \ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY,\
73
+ \ OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT,\
74
+ \ SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META\
75
+ \ OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n\
76
+ 5. Intellectual Property.\na. No trademark licenses are granted under this Agreement,\
77
+ \ and in connection with the Llama Materials, neither Meta nor Licensee may use\
78
+ \ any name or mark owned by or associated with the other or any of its affiliates,\
79
+ \ except as required for reasonable and customary use in describing and redistributing\
80
+ \ the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you\
81
+ \ a license to use “Llama 3” (the “Mark”) solely as required to comply with the\
82
+ \ last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently\
83
+ \ accessible at https://about.meta.com/brand/resources/meta/company-brand/ ). All\
84
+ \ goodwill arising out of your use of the Mark will inure to the benefit of Meta.\n\
85
+ b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for\
86
+ \ Meta, with respect to any derivative works and modifications of the Llama Materials\
87
+ \ that are made by you, as between you and Meta, you are and will be the owner of\
88
+ \ such derivative works and modifications.\nc. If you institute litigation or other\
89
+ \ proceedings against Meta or any entity (including a cross-claim or counterclaim\
90
+ \ in a lawsuit) alleging that the Llama Materials or Meta Llama 3 outputs or results,\
91
+ \ or any portion of any of the foregoing, constitutes infringement of intellectual\
92
+ \ property or other rights owned or licensable by you, then any licenses granted\
93
+ \ to you under this Agreement shall terminate as of the date such litigation or\
94
+ \ claim is filed or instituted. You will indemnify and hold harmless Meta from and\
95
+ \ against any claim by any third party arising out of or related to your use or\
96
+ \ distribution of the Llama Materials.\n6. Term and Termination. The term of this\
97
+ \ Agreement will commence upon your acceptance of this Agreement or access to the\
98
+ \ Llama Materials and will continue in full force and effect until terminated in\
99
+ \ accordance with the terms and conditions herein. Meta may terminate this Agreement\
100
+ \ if you are in breach of any term or condition of this Agreement. Upon termination\
101
+ \ of this Agreement, you shall delete and cease use of the Llama Materials. Sections\
102
+ \ 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law\
103
+ \ and Jurisdiction. This Agreement will be governed and construed under the laws\
104
+ \ of the State of California without regard to choice of law principles, and the\
105
+ \ UN Convention on Contracts for the International Sale of Goods does not apply\
106
+ \ to this Agreement. The courts of California shall have exclusive jurisdiction\
107
+ \ of any dispute arising out of this Agreement.\n### Meta Llama 3 Acceptable Use\
108
+ \ Policy\nMeta is committed to promoting safe and fair use of its tools and features,\
109
+ \ including Meta Llama 3. If you access or use Meta Llama 3, you agree to this Acceptable\
110
+ \ Use Policy (“Policy”). The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy](https://llama.meta.com/llama3/use-policy)\n\
111
+ #### Prohibited Uses\nWe want everyone to use Meta Llama 3 safely and responsibly.\
112
+ \ You agree you will not use, or allow others to use, Meta Llama 3 to: 1. Violate\
113
+ \ the law or others’ rights, including to:\n 1. Engage in, promote, generate,\
114
+ \ contribute to, encourage, plan, incite, or further illegal or unlawful activity\
115
+ \ or content, such as:\n 1. Violence or terrorism\n 2. Exploitation\
116
+ \ or harm to children, including the solicitation, creation, acquisition, or dissemination\
117
+ \ of child exploitative content or failure to report Child Sexual Abuse Material\n\
118
+ \ 3. Human trafficking, exploitation, and sexual violence\n 4. The\
119
+ \ illegal distribution of information or materials to minors, including obscene\
120
+ \ materials, or failure to employ legally required age-gating in connection with\
121
+ \ such information or materials.\n 5. Sexual solicitation\n 6. Any\
122
+ \ other criminal activity\n 2. Engage in, promote, incite, or facilitate the\
123
+ \ harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\
124
+ \ 3. Engage in, promote, incite, or facilitate discrimination or other unlawful\
125
+ \ or harmful conduct in the provision of employment, employment benefits, credit,\
126
+ \ housing, other economic benefits, or other essential goods and services\n 4.\
127
+ \ Engage in the unauthorized or unlicensed practice of any profession including,\
128
+ \ but not limited to, financial, legal, medical/health, or related professional\
129
+ \ practices\n 5. Collect, process, disclose, generate, or infer health, demographic,\
130
+ \ or other sensitive personal or private information about individuals without rights\
131
+ \ and consents required by applicable laws\n 6. Engage in or facilitate any action\
132
+ \ or generate any content that infringes, misappropriates, or otherwise violates\
133
+ \ any third-party rights, including the outputs or results of any products or services\
134
+ \ using the Llama Materials\n 7. Create, generate, or facilitate the creation\
135
+ \ of malicious code, malware, computer viruses or do anything else that could disable,\
136
+ \ overburden, interfere with or impair the proper working, integrity, operation\
137
+ \ or appearance of a website or computer system\n2. Engage in, promote, incite,\
138
+ \ facilitate, or assist in the planning or development of activities that present\
139
+ \ a risk of death or bodily harm to individuals, including use of Meta Llama 3 related\
140
+ \ to the following:\n 1. Military, warfare, nuclear industries or applications,\
141
+ \ espionage, use for materials or activities that are subject to the International\
142
+ \ Traffic Arms Regulations (ITAR) maintained by the United States Department of\
143
+ \ State\n 2. Guns and illegal weapons (including weapon development)\n 3.\
144
+ \ Illegal drugs and regulated/controlled substances\n 4. Operation of critical\
145
+ \ infrastructure, transportation technologies, or heavy machinery\n 5. Self-harm\
146
+ \ or harm to others, including suicide, cutting, and eating disorders\n 6. Any\
147
+ \ content intended to incite or promote violence, abuse, or any infliction of bodily\
148
+ \ harm to an individual\n3. Intentionally deceive or mislead others, including use\
149
+ \ of Meta Llama 3 related to the following:\n 1. Generating, promoting, or furthering\
150
+ \ fraud or the creation or promotion of disinformation\n 2. Generating, promoting,\
151
+ \ or furthering defamatory content, including the creation of defamatory statements,\
152
+ \ images, or other content\n 3. Generating, promoting, or further distributing\
153
+ \ spam\n 4. Impersonating another individual without consent, authorization,\
154
+ \ or legal right\n 5. Representing that the use of Meta Llama 3 or outputs are\
155
+ \ human-generated\n 6. Generating or facilitating false online engagement, including\
156
+ \ fake reviews and other means of fake online engagement\n4. Fail to appropriately\
157
+ \ disclose to end users any known dangers of your AI system\nPlease report any violation\
158
+ \ of this Policy, software “bug,” or other problems that could lead to a violation\
159
+ \ of this Policy through one of the following means:\n * Reporting issues with\
160
+ \ the model: [https://github.com/meta-llama/llama3](https://github.com/meta-llama/llama3)\n\
161
+ \ * Reporting risky content generated by the model:\n developers.facebook.com/llama_output_feedback\n\
162
+ \ * Reporting bugs and security concerns: facebook.com/whitehat/info\n * Reporting\
163
+ \ violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: LlamaUseReport@meta.com"
164
+ extra_gated_fields:
165
+ First Name: text
166
+ Last Name: text
167
+ Date of birth: date_picker
168
+ Country: country
169
+ Affiliation: text
170
+ geo: ip_location
171
+ ? By clicking Submit below I accept the terms of the license and acknowledge that
172
+ the information I provide will be collected stored processed and shared in accordance
173
+ with the Meta Privacy Policy
174
+ : checkbox
175
+ extra_gated_description: The information you provide will be collected, stored, processed
176
+ and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).
177
+ extra_gated_button_content: Submit
178
+ widget:
179
+ - example_title: Hello
180
+ messages:
181
+ - role: user
182
+ content: Hey my name is Julien! How are you?
183
+ - example_title: Winter holidays
184
+ messages:
185
+ - role: system
186
+ content: You are a helpful and honest assistant. Please, respond concisely and
187
+ truthfully.
188
+ - role: user
189
+ content: Can you recommend a good destination for Winter holidays?
190
+ - example_title: Programming assistant
191
+ messages:
192
+ - role: system
193
+ content: You are a helpful and honest code and programming assistant. Please,
194
+ respond concisely and truthfully.
195
+ - role: user
196
+ content: Write a function that computes the nth fibonacci number.
197
+ inference:
198
+ parameters:
199
+ max_new_tokens: 300
200
+ stop:
201
+ - <|end_of_text|>
202
+ - <|eot_id|>
203
+ ---
204
+
205
+ ## Model Details
206
+
207
+ Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety.
208
+
209
+ **Model developers** Meta
210
+
211
+ **Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants.
212
+
213
+ **Input** Models input text only.
214
+
215
+ **Output** Models generate text and code only.
216
+
217
+ **Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
218
+
219
+
220
+ <table>
221
+ <tr>
222
+ <td>
223
+ </td>
224
+ <td><strong>Training Data</strong>
225
+ </td>
226
+ <td><strong>Params</strong>
227
+ </td>
228
+ <td><strong>Context length</strong>
229
+ </td>
230
+ <td><strong>GQA</strong>
231
+ </td>
232
+ <td><strong>Token count</strong>
233
+ </td>
234
+ <td><strong>Knowledge cutoff</strong>
235
+ </td>
236
+ </tr>
237
+ <tr>
238
+ <td rowspan="2" >Llama 3
239
+ </td>
240
+ <td rowspan="2" >A new mix of publicly available online data.
241
+ </td>
242
+ <td>8B
243
+ </td>
244
+ <td>8k
245
+ </td>
246
+ <td>Yes
247
+ </td>
248
+ <td rowspan="2" >15T+
249
+ </td>
250
+ <td>March, 2023
251
+ </td>
252
+ </tr>
253
+ <tr>
254
+ <td>70B
255
+ </td>
256
+ <td>8k
257
+ </td>
258
+ <td>Yes
259
+ </td>
260
+ <td>December, 2023
261
+ </td>
262
+ </tr>
263
+ </table>
264
+
265
+
266
+ **Llama 3 family of models**. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability.
267
+
268
+ **Model Release Date** April 18, 2024.
269
+
270
+ **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
271
+
272
+ **License** A custom commercial license is available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license)
273
+
274
+ Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
275
+
276
+
277
+ ## Intended Use
278
+
279
+ **Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
280
+
281
+ **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**.
282
+
283
+ **Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy.
284
+
285
+ ## How to use
286
+
287
+ This repository contains two versions of Meta-Llama-3-8B-Instruct, for use with transformers and with the original `llama3` codebase.
288
+
289
+ ### Use with transformers
290
+
291
+ You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both.
292
+
293
+ #### Transformers pipeline
294
+
295
+ ```python
296
+ import transformers
297
+ import torch
298
+
299
+ model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
300
+
301
+ pipeline = transformers.pipeline(
302
+ "text-generation",
303
+ model=model_id,
304
+ model_kwargs={"torch_dtype": torch.bfloat16},
305
+ device_map="auto",
306
+ )
307
+
308
+ messages = [
309
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
310
+ {"role": "user", "content": "Who are you?"},
311
+ ]
312
+
313
+ terminators = [
314
+ pipeline.tokenizer.eos_token_id,
315
+ pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
316
+ ]
317
+
318
+ outputs = pipeline(
319
+ messages,
320
+ max_new_tokens=256,
321
+ eos_token_id=terminators,
322
+ do_sample=True,
323
+ temperature=0.6,
324
+ top_p=0.9,
325
+ )
326
+ print(outputs[0]["generated_text"][-1])
327
+ ```
328
+
329
+ #### Transformers AutoModelForCausalLM
330
+
331
+ ```python
332
+ from transformers import AutoTokenizer, AutoModelForCausalLM
333
+ import torch
334
+
335
+ model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
336
+
337
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
338
+ model = AutoModelForCausalLM.from_pretrained(
339
+ model_id,
340
+ torch_dtype=torch.bfloat16,
341
+ device_map="auto",
342
+ )
343
+
344
+ messages = [
345
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
346
+ {"role": "user", "content": "Who are you?"},
347
+ ]
348
+
349
+ input_ids = tokenizer.apply_chat_template(
350
+ messages,
351
+ add_generation_prompt=True,
352
+ return_tensors="pt"
353
+ ).to(model.device)
354
+
355
+ terminators = [
356
+ tokenizer.eos_token_id,
357
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
358
+ ]
359
+
360
+ outputs = model.generate(
361
+ input_ids,
362
+ max_new_tokens=256,
363
+ eos_token_id=terminators,
364
+ do_sample=True,
365
+ temperature=0.6,
366
+ top_p=0.9,
367
+ )
368
+ response = outputs[0][input_ids.shape[-1]:]
369
+ print(tokenizer.decode(response, skip_special_tokens=True))
370
+ ```
371
+
372
+
373
+ ### Use with `llama3`
374
+
375
+ Please, follow the instructions in the [repository](https://github.com/meta-llama/llama3)
376
+
377
+ To download Original checkpoints, see the example command below leveraging `huggingface-cli`:
378
+
379
+ ```
380
+ huggingface-cli download meta-llama/Meta-Llama-3-8B-Instruct --include "original/*" --local-dir Meta-Llama-3-8B-Instruct
381
+ ```
382
+
383
+ For Hugging Face support, we recommend using transformers or TGI, but a similar command works.
384
+
385
+ ## Hardware and Software
386
+
387
+ **Training Factors** We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.
388
+
389
+ **Carbon Footprint Pretraining utilized a cumulative** 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.
390
+
391
+
392
+ <table>
393
+ <tr>
394
+ <td>
395
+ </td>
396
+ <td><strong>Time (GPU hours)</strong>
397
+ </td>
398
+ <td><strong>Power Consumption (W)</strong>
399
+ </td>
400
+ <td><strong>Carbon Emitted(tCO2eq)</strong>
401
+ </td>
402
+ </tr>
403
+ <tr>
404
+ <td>Llama 3 8B
405
+ </td>
406
+ <td>1.3M
407
+ </td>
408
+ <td>700
409
+ </td>
410
+ <td>390
411
+ </td>
412
+ </tr>
413
+ <tr>
414
+ <td>Llama 3 70B
415
+ </td>
416
+ <td>6.4M
417
+ </td>
418
+ <td>700
419
+ </td>
420
+ <td>1900
421
+ </td>
422
+ </tr>
423
+ <tr>
424
+ <td>Total
425
+ </td>
426
+ <td>7.7M
427
+ </td>
428
+ <td>
429
+ </td>
430
+ <td>2290
431
+ </td>
432
+ </tr>
433
+ </table>
434
+
435
+
436
+
437
+ **CO2 emissions during pre-training**. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.
438
+
439
+
440
+ ## Training Data
441
+
442
+ **Overview** Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.
443
+
444
+ **Data Freshness** The pretraining data has a cutoff of March 2023 for the 8B and December 2023 for the 70B models respectively.
445
+
446
+
447
+ ## Benchmarks
448
+
449
+ In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see [here](https://github.com/meta-llama/llama3/blob/main/eval_methodology.md).
450
+
451
+
452
+ ### Base pretrained models
453
+
454
+
455
+ <table>
456
+ <tr>
457
+ <td><strong>Category</strong>
458
+ </td>
459
+ <td><strong>Benchmark</strong>
460
+ </td>
461
+ <td><strong>Llama 3 8B</strong>
462
+ </td>
463
+ <td><strong>Llama2 7B</strong>
464
+ </td>
465
+ <td><strong>Llama2 13B</strong>
466
+ </td>
467
+ <td><strong>Llama 3 70B</strong>
468
+ </td>
469
+ <td><strong>Llama2 70B</strong>
470
+ </td>
471
+ </tr>
472
+ <tr>
473
+ <td rowspan="6" >General
474
+ </td>
475
+ <td>MMLU (5-shot)
476
+ </td>
477
+ <td>66.6
478
+ </td>
479
+ <td>45.7
480
+ </td>
481
+ <td>53.8
482
+ </td>
483
+ <td>79.5
484
+ </td>
485
+ <td>69.7
486
+ </td>
487
+ </tr>
488
+ <tr>
489
+ <td>AGIEval English (3-5 shot)
490
+ </td>
491
+ <td>45.9
492
+ </td>
493
+ <td>28.8
494
+ </td>
495
+ <td>38.7
496
+ </td>
497
+ <td>63.0
498
+ </td>
499
+ <td>54.8
500
+ </td>
501
+ </tr>
502
+ <tr>
503
+ <td>CommonSenseQA (7-shot)
504
+ </td>
505
+ <td>72.6
506
+ </td>
507
+ <td>57.6
508
+ </td>
509
+ <td>67.6
510
+ </td>
511
+ <td>83.8
512
+ </td>
513
+ <td>78.7
514
+ </td>
515
+ </tr>
516
+ <tr>
517
+ <td>Winogrande (5-shot)
518
+ </td>
519
+ <td>76.1
520
+ </td>
521
+ <td>73.3
522
+ </td>
523
+ <td>75.4
524
+ </td>
525
+ <td>83.1
526
+ </td>
527
+ <td>81.8
528
+ </td>
529
+ </tr>
530
+ <tr>
531
+ <td>BIG-Bench Hard (3-shot, CoT)
532
+ </td>
533
+ <td>61.1
534
+ </td>
535
+ <td>38.1
536
+ </td>
537
+ <td>47.0
538
+ </td>
539
+ <td>81.3
540
+ </td>
541
+ <td>65.7
542
+ </td>
543
+ </tr>
544
+ <tr>
545
+ <td>ARC-Challenge (25-shot)
546
+ </td>
547
+ <td>78.6
548
+ </td>
549
+ <td>53.7
550
+ </td>
551
+ <td>67.6
552
+ </td>
553
+ <td>93.0
554
+ </td>
555
+ <td>85.3
556
+ </td>
557
+ </tr>
558
+ <tr>
559
+ <td>Knowledge reasoning
560
+ </td>
561
+ <td>TriviaQA-Wiki (5-shot)
562
+ </td>
563
+ <td>78.5
564
+ </td>
565
+ <td>72.1
566
+ </td>
567
+ <td>79.6
568
+ </td>
569
+ <td>89.7
570
+ </td>
571
+ <td>87.5
572
+ </td>
573
+ </tr>
574
+ <tr>
575
+ <td rowspan="4" >Reading comprehension
576
+ </td>
577
+ <td>SQuAD (1-shot)
578
+ </td>
579
+ <td>76.4
580
+ </td>
581
+ <td>72.2
582
+ </td>
583
+ <td>72.1
584
+ </td>
585
+ <td>85.6
586
+ </td>
587
+ <td>82.6
588
+ </td>
589
+ </tr>
590
+ <tr>
591
+ <td>QuAC (1-shot, F1)
592
+ </td>
593
+ <td>44.4
594
+ </td>
595
+ <td>39.6
596
+ </td>
597
+ <td>44.9
598
+ </td>
599
+ <td>51.1
600
+ </td>
601
+ <td>49.4
602
+ </td>
603
+ </tr>
604
+ <tr>
605
+ <td>BoolQ (0-shot)
606
+ </td>
607
+ <td>75.7
608
+ </td>
609
+ <td>65.5
610
+ </td>
611
+ <td>66.9
612
+ </td>
613
+ <td>79.0
614
+ </td>
615
+ <td>73.1
616
+ </td>
617
+ </tr>
618
+ <tr>
619
+ <td>DROP (3-shot, F1)
620
+ </td>
621
+ <td>58.4
622
+ </td>
623
+ <td>37.9
624
+ </td>
625
+ <td>49.8
626
+ </td>
627
+ <td>79.7
628
+ </td>
629
+ <td>70.2
630
+ </td>
631
+ </tr>
632
+ </table>
633
+
634
+
635
+
636
+ ### Instruction tuned models
637
+
638
+
639
+ <table>
640
+ <tr>
641
+ <td><strong>Benchmark</strong>
642
+ </td>
643
+ <td><strong>Llama 3 8B</strong>
644
+ </td>
645
+ <td><strong>Llama 2 7B</strong>
646
+ </td>
647
+ <td><strong>Llama 2 13B</strong>
648
+ </td>
649
+ <td><strong>Llama 3 70B</strong>
650
+ </td>
651
+ <td><strong>Llama 2 70B</strong>
652
+ </td>
653
+ </tr>
654
+ <tr>
655
+ <td>MMLU (5-shot)
656
+ </td>
657
+ <td>68.4
658
+ </td>
659
+ <td>34.1
660
+ </td>
661
+ <td>47.8
662
+ </td>
663
+ <td>82.0
664
+ </td>
665
+ <td>52.9
666
+ </td>
667
+ </tr>
668
+ <tr>
669
+ <td>GPQA (0-shot)
670
+ </td>
671
+ <td>34.2
672
+ </td>
673
+ <td>21.7
674
+ </td>
675
+ <td>22.3
676
+ </td>
677
+ <td>39.5
678
+ </td>
679
+ <td>21.0
680
+ </td>
681
+ </tr>
682
+ <tr>
683
+ <td>HumanEval (0-shot)
684
+ </td>
685
+ <td>62.2
686
+ </td>
687
+ <td>7.9
688
+ </td>
689
+ <td>14.0
690
+ </td>
691
+ <td>81.7
692
+ </td>
693
+ <td>25.6
694
+ </td>
695
+ </tr>
696
+ <tr>
697
+ <td>GSM-8K (8-shot, CoT)
698
+ </td>
699
+ <td>79.6
700
+ </td>
701
+ <td>25.7
702
+ </td>
703
+ <td>77.4
704
+ </td>
705
+ <td>93.0
706
+ </td>
707
+ <td>57.5
708
+ </td>
709
+ </tr>
710
+ <tr>
711
+ <td>MATH (4-shot, CoT)
712
+ </td>
713
+ <td>30.0
714
+ </td>
715
+ <td>3.8
716
+ </td>
717
+ <td>6.7
718
+ </td>
719
+ <td>50.4
720
+ </td>
721
+ <td>11.6
722
+ </td>
723
+ </tr>
724
+ </table>
725
+
726
+
727
+
728
+ ### Responsibility & Safety
729
+
730
+ We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.
731
+
732
+ Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.
733
+
734
+ Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.
735
+
736
+
737
+ As part of the Llama 3 release, we updated our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including [Meta Llama Guard 2](https://llama.meta.com/purple-llama/) and [Code Shield](https://llama.meta.com/purple-llama/) safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a [reference implementation](https://github.com/meta-llama/llama-recipes/tree/main/recipes/responsible_ai) to get you started.
738
+
739
+
740
+ #### Llama 3-Instruct
741
+
742
+ As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.
743
+
744
+ <span style="text-decoration:underline;">Safety</span>
745
+
746
+ For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.
747
+
748
+ <span style="text-decoration:underline;">Refusals</span>
749
+
750
+ In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.
751
+
752
+ We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.
753
+
754
+
755
+ #### Responsible release
756
+
757
+ In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.
758
+
759
+ Misuse
760
+
761
+ If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy/](https://llama.meta.com/llama3/use-policy/).
762
+
763
+
764
+ #### Critical risks
765
+
766
+ <span style="text-decoration:underline;">CBRNE</span> (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)
767
+
768
+ We have conducted a two fold assessment of the safety of the model in this area:
769
+
770
+
771
+
772
+ * Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.
773
+ * Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).
774
+
775
+
776
+ ### <span style="text-decoration:underline;">Cyber Security </span>
777
+
778
+ We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of [equivalent coding capability](https://huggingface.co/spaces/facebook/CyberSecEval).
779
+
780
+
781
+ ### <span style="text-decoration:underline;">Child Safety</span>
782
+
783
+ Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.
784
+
785
+
786
+ ### Community
787
+
788
+ Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama).
789
+
790
+ Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community.
791
+
792
+
793
+ ## Ethical Considerations and Limitations
794
+
795
+ The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.
796
+
797
+ But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating [Purple Llama](https://github.com/facebookresearch/PurpleLlama) solutions into your workflows and specifically [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.
798
+
799
+ Please see the Responsible Use Guide available at [http://llama.meta.com/responsible-use-guide](http://llama.meta.com/responsible-use-guide)
800
+
801
+
802
+ ## Citation instructions
803
+
804
+ @article{llama3modelcard,
805
+
806
+ title={Llama 3 Model Card},
807
+
808
+ author={AI@Meta},
809
+
810
+ year={2024},
811
+
812
+ url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
813
+
814
+ }
815
+
816
+ ## Contributors
817
+
818
+ Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Meta-Llama-3-8B-Instruct",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 128000,
9
+ "eos_token_id": 128009,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 14336,
14
+ "max_position_embeddings": 8192,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 32,
18
+ "num_key_value_heads": 8,
19
+ "pretraining_tp": 1,
20
+ "quantization_config": {
21
+ "bits": 4,
22
+ "group_size": 128,
23
+ "modules_to_not_convert": null,
24
+ "quant_method": "awq",
25
+ "version": "gemm",
26
+ "zero_point": true
27
+ },
28
+ "rms_norm_eps": 1e-05,
29
+ "rope_scaling": null,
30
+ "rope_theta": 500000.0,
31
+ "tie_word_embeddings": false,
32
+ "torch_dtype": "float16",
33
+ "transformers_version": "4.38.2",
34
+ "use_cache": true,
35
+ "vocab_size": 128256
36
+ }
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128009
7
+ ],
8
+ "max_length": 4096,
9
+ "temperature": 0.6,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.38.2"
12
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:021d98282bc677dd9f10305730dea60b563305072599424d4cda850ce6b0ce1e
3
+ size 4677265296
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8005050c5e27c8232d9ce04f03631ce67bcc362c80fc57079bda23b498695c20
3
+ size 1050673280
model.safetensors.index.json ADDED
@@ -0,0 +1,746 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 5727854592
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
20
+ "model.layers.0.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
21
+ "model.layers.0.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
22
+ "model.layers.0.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
23
+ "model.layers.0.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
24
+ "model.layers.0.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
25
+ "model.layers.0.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
26
+ "model.layers.0.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
27
+ "model.layers.0.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
28
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
32
+ "model.layers.1.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
33
+ "model.layers.1.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
34
+ "model.layers.1.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
35
+ "model.layers.1.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
36
+ "model.layers.1.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
37
+ "model.layers.1.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
38
+ "model.layers.1.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
39
+ "model.layers.1.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
40
+ "model.layers.1.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
41
+ "model.layers.1.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
42
+ "model.layers.1.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
43
+ "model.layers.1.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
44
+ "model.layers.1.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
45
+ "model.layers.1.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
46
+ "model.layers.1.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
47
+ "model.layers.1.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
48
+ "model.layers.1.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
49
+ "model.layers.1.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
50
+ "model.layers.1.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
51
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.2.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
54
+ "model.layers.2.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
55
+ "model.layers.2.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
56
+ "model.layers.2.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
57
+ "model.layers.2.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
58
+ "model.layers.2.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
59
+ "model.layers.2.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
60
+ "model.layers.2.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
61
+ "model.layers.2.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
62
+ "model.layers.2.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
63
+ "model.layers.2.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
64
+ "model.layers.2.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
65
+ "model.layers.2.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
66
+ "model.layers.2.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
67
+ "model.layers.2.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
68
+ "model.layers.2.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
69
+ "model.layers.2.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
70
+ "model.layers.2.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
71
+ "model.layers.2.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
72
+ "model.layers.2.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
73
+ "model.layers.2.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
74
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.3.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
77
+ "model.layers.3.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
78
+ "model.layers.3.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
79
+ "model.layers.3.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
80
+ "model.layers.3.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
81
+ "model.layers.3.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
82
+ "model.layers.3.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
83
+ "model.layers.3.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
84
+ "model.layers.3.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
85
+ "model.layers.3.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
86
+ "model.layers.3.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
87
+ "model.layers.3.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
88
+ "model.layers.3.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
89
+ "model.layers.3.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
90
+ "model.layers.3.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
91
+ "model.layers.3.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
92
+ "model.layers.3.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
93
+ "model.layers.3.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
94
+ "model.layers.3.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
95
+ "model.layers.3.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
96
+ "model.layers.3.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
97
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.4.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
100
+ "model.layers.4.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
101
+ "model.layers.4.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
102
+ "model.layers.4.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
103
+ "model.layers.4.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
104
+ "model.layers.4.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
105
+ "model.layers.4.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
106
+ "model.layers.4.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
107
+ "model.layers.4.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
108
+ "model.layers.4.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
109
+ "model.layers.4.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
110
+ "model.layers.4.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
111
+ "model.layers.4.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
112
+ "model.layers.4.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
113
+ "model.layers.4.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
114
+ "model.layers.4.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
115
+ "model.layers.4.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
116
+ "model.layers.4.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
117
+ "model.layers.4.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
118
+ "model.layers.4.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
119
+ "model.layers.4.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
120
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.5.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
123
+ "model.layers.5.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
124
+ "model.layers.5.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
125
+ "model.layers.5.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
126
+ "model.layers.5.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
127
+ "model.layers.5.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
128
+ "model.layers.5.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
129
+ "model.layers.5.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
130
+ "model.layers.5.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
131
+ "model.layers.5.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
132
+ "model.layers.5.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
133
+ "model.layers.5.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
134
+ "model.layers.5.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
135
+ "model.layers.5.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
136
+ "model.layers.5.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
137
+ "model.layers.5.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
138
+ "model.layers.5.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
139
+ "model.layers.5.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
140
+ "model.layers.5.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
141
+ "model.layers.5.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
142
+ "model.layers.5.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
143
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.6.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
146
+ "model.layers.6.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
147
+ "model.layers.6.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
148
+ "model.layers.6.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
149
+ "model.layers.6.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
150
+ "model.layers.6.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
151
+ "model.layers.6.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
152
+ "model.layers.6.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
153
+ "model.layers.6.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
154
+ "model.layers.6.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
155
+ "model.layers.6.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
156
+ "model.layers.6.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
157
+ "model.layers.6.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
158
+ "model.layers.6.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
159
+ "model.layers.6.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
160
+ "model.layers.6.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
161
+ "model.layers.6.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
162
+ "model.layers.6.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
163
+ "model.layers.6.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
164
+ "model.layers.6.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
165
+ "model.layers.6.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
166
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.7.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
169
+ "model.layers.7.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
170
+ "model.layers.7.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
171
+ "model.layers.7.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
172
+ "model.layers.7.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
173
+ "model.layers.7.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
174
+ "model.layers.7.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
175
+ "model.layers.7.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
176
+ "model.layers.7.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
177
+ "model.layers.7.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
178
+ "model.layers.7.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
179
+ "model.layers.7.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
180
+ "model.layers.7.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
181
+ "model.layers.7.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
182
+ "model.layers.7.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
183
+ "model.layers.7.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
184
+ "model.layers.7.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
185
+ "model.layers.7.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
186
+ "model.layers.7.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
187
+ "model.layers.7.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
188
+ "model.layers.7.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
189
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.8.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
192
+ "model.layers.8.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
193
+ "model.layers.8.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
194
+ "model.layers.8.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
195
+ "model.layers.8.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
196
+ "model.layers.8.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
197
+ "model.layers.8.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
198
+ "model.layers.8.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
199
+ "model.layers.8.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
200
+ "model.layers.8.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
201
+ "model.layers.8.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
202
+ "model.layers.8.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
203
+ "model.layers.8.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
204
+ "model.layers.8.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
205
+ "model.layers.8.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
206
+ "model.layers.8.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
207
+ "model.layers.8.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
208
+ "model.layers.8.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
209
+ "model.layers.8.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
210
+ "model.layers.8.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
211
+ "model.layers.8.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
212
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.9.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
215
+ "model.layers.9.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
216
+ "model.layers.9.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
217
+ "model.layers.9.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
218
+ "model.layers.9.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
219
+ "model.layers.9.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
220
+ "model.layers.9.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
221
+ "model.layers.9.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
222
+ "model.layers.9.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
223
+ "model.layers.9.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
224
+ "model.layers.9.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
225
+ "model.layers.9.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
226
+ "model.layers.9.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
227
+ "model.layers.9.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
228
+ "model.layers.9.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
229
+ "model.layers.9.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
230
+ "model.layers.9.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
231
+ "model.layers.9.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
232
+ "model.layers.9.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
233
+ "model.layers.9.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
234
+ "model.layers.9.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
235
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.10.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
238
+ "model.layers.10.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
239
+ "model.layers.10.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
240
+ "model.layers.10.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
241
+ "model.layers.10.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
242
+ "model.layers.10.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
243
+ "model.layers.10.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
244
+ "model.layers.10.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
245
+ "model.layers.10.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
246
+ "model.layers.10.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
247
+ "model.layers.10.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
248
+ "model.layers.10.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
249
+ "model.layers.10.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
250
+ "model.layers.10.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
251
+ "model.layers.10.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
252
+ "model.layers.10.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
253
+ "model.layers.10.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
254
+ "model.layers.10.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
255
+ "model.layers.10.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
256
+ "model.layers.10.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
257
+ "model.layers.10.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
258
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.11.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
261
+ "model.layers.11.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
262
+ "model.layers.11.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
263
+ "model.layers.11.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
264
+ "model.layers.11.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
265
+ "model.layers.11.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
266
+ "model.layers.11.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
267
+ "model.layers.11.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
268
+ "model.layers.11.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
269
+ "model.layers.11.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
270
+ "model.layers.11.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
271
+ "model.layers.11.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
272
+ "model.layers.11.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
273
+ "model.layers.11.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
274
+ "model.layers.11.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
275
+ "model.layers.11.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
276
+ "model.layers.11.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
277
+ "model.layers.11.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
278
+ "model.layers.11.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
279
+ "model.layers.11.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
280
+ "model.layers.11.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
281
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
282
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
283
+ "model.layers.12.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
284
+ "model.layers.12.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
285
+ "model.layers.12.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
286
+ "model.layers.12.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
287
+ "model.layers.12.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
288
+ "model.layers.12.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
289
+ "model.layers.12.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
290
+ "model.layers.12.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
291
+ "model.layers.12.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
292
+ "model.layers.12.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
293
+ "model.layers.12.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
294
+ "model.layers.12.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
295
+ "model.layers.12.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
296
+ "model.layers.12.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
297
+ "model.layers.12.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
298
+ "model.layers.12.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
299
+ "model.layers.12.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
300
+ "model.layers.12.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
301
+ "model.layers.12.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
302
+ "model.layers.12.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
303
+ "model.layers.12.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
304
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
305
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
306
+ "model.layers.13.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
307
+ "model.layers.13.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
308
+ "model.layers.13.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
309
+ "model.layers.13.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
310
+ "model.layers.13.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
311
+ "model.layers.13.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
312
+ "model.layers.13.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
313
+ "model.layers.13.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
314
+ "model.layers.13.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
315
+ "model.layers.13.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
316
+ "model.layers.13.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
317
+ "model.layers.13.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
318
+ "model.layers.13.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
319
+ "model.layers.13.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
320
+ "model.layers.13.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
321
+ "model.layers.13.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
322
+ "model.layers.13.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
323
+ "model.layers.13.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
324
+ "model.layers.13.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
325
+ "model.layers.13.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
326
+ "model.layers.13.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
327
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
328
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
329
+ "model.layers.14.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
330
+ "model.layers.14.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
331
+ "model.layers.14.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
332
+ "model.layers.14.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
333
+ "model.layers.14.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
334
+ "model.layers.14.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
335
+ "model.layers.14.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
336
+ "model.layers.14.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
337
+ "model.layers.14.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
338
+ "model.layers.14.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
339
+ "model.layers.14.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
340
+ "model.layers.14.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
341
+ "model.layers.14.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
342
+ "model.layers.14.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
343
+ "model.layers.14.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
344
+ "model.layers.14.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
345
+ "model.layers.14.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
346
+ "model.layers.14.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
347
+ "model.layers.14.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
348
+ "model.layers.14.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
349
+ "model.layers.14.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
350
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
351
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
352
+ "model.layers.15.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
353
+ "model.layers.15.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
354
+ "model.layers.15.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
355
+ "model.layers.15.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
356
+ "model.layers.15.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
357
+ "model.layers.15.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
358
+ "model.layers.15.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
359
+ "model.layers.15.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
360
+ "model.layers.15.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
361
+ "model.layers.15.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
362
+ "model.layers.15.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
363
+ "model.layers.15.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
364
+ "model.layers.15.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
365
+ "model.layers.15.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
366
+ "model.layers.15.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
367
+ "model.layers.15.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
368
+ "model.layers.15.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
369
+ "model.layers.15.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
370
+ "model.layers.15.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
371
+ "model.layers.15.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
372
+ "model.layers.15.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
373
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
374
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.16.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
376
+ "model.layers.16.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
377
+ "model.layers.16.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
378
+ "model.layers.16.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
379
+ "model.layers.16.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
380
+ "model.layers.16.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
381
+ "model.layers.16.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
382
+ "model.layers.16.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
383
+ "model.layers.16.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
384
+ "model.layers.16.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
385
+ "model.layers.16.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
386
+ "model.layers.16.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
387
+ "model.layers.16.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
388
+ "model.layers.16.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
389
+ "model.layers.16.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
390
+ "model.layers.16.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
391
+ "model.layers.16.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
392
+ "model.layers.16.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
393
+ "model.layers.16.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
394
+ "model.layers.16.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
395
+ "model.layers.16.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
396
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
398
+ "model.layers.17.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
399
+ "model.layers.17.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
400
+ "model.layers.17.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
401
+ "model.layers.17.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
402
+ "model.layers.17.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
403
+ "model.layers.17.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
404
+ "model.layers.17.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
405
+ "model.layers.17.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
406
+ "model.layers.17.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
407
+ "model.layers.17.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
408
+ "model.layers.17.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
409
+ "model.layers.17.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
410
+ "model.layers.17.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
411
+ "model.layers.17.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
412
+ "model.layers.17.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
413
+ "model.layers.17.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
414
+ "model.layers.17.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
415
+ "model.layers.17.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
416
+ "model.layers.17.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
417
+ "model.layers.17.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
418
+ "model.layers.17.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
419
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.18.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
422
+ "model.layers.18.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
423
+ "model.layers.18.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
424
+ "model.layers.18.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
425
+ "model.layers.18.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
426
+ "model.layers.18.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
427
+ "model.layers.18.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
428
+ "model.layers.18.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
429
+ "model.layers.18.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
430
+ "model.layers.18.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
431
+ "model.layers.18.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
432
+ "model.layers.18.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
433
+ "model.layers.18.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
434
+ "model.layers.18.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
435
+ "model.layers.18.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
436
+ "model.layers.18.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
437
+ "model.layers.18.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
438
+ "model.layers.18.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
439
+ "model.layers.18.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
440
+ "model.layers.18.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
441
+ "model.layers.18.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
442
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
443
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
444
+ "model.layers.19.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
445
+ "model.layers.19.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
446
+ "model.layers.19.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
447
+ "model.layers.19.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
448
+ "model.layers.19.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
449
+ "model.layers.19.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
450
+ "model.layers.19.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
451
+ "model.layers.19.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
452
+ "model.layers.19.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
453
+ "model.layers.19.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
454
+ "model.layers.19.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
455
+ "model.layers.19.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
456
+ "model.layers.19.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
457
+ "model.layers.19.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
458
+ "model.layers.19.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
459
+ "model.layers.19.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
460
+ "model.layers.19.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
461
+ "model.layers.19.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
462
+ "model.layers.19.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
463
+ "model.layers.19.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
464
+ "model.layers.19.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
465
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
466
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
467
+ "model.layers.20.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
468
+ "model.layers.20.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
469
+ "model.layers.20.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
470
+ "model.layers.20.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
471
+ "model.layers.20.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
472
+ "model.layers.20.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
473
+ "model.layers.20.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
474
+ "model.layers.20.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
475
+ "model.layers.20.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
476
+ "model.layers.20.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
477
+ "model.layers.20.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
478
+ "model.layers.20.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
479
+ "model.layers.20.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
480
+ "model.layers.20.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
481
+ "model.layers.20.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
482
+ "model.layers.20.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
483
+ "model.layers.20.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
484
+ "model.layers.20.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
485
+ "model.layers.20.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
486
+ "model.layers.20.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
487
+ "model.layers.20.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
488
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
489
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
490
+ "model.layers.21.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
491
+ "model.layers.21.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
492
+ "model.layers.21.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
493
+ "model.layers.21.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
494
+ "model.layers.21.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
495
+ "model.layers.21.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
496
+ "model.layers.21.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
497
+ "model.layers.21.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
498
+ "model.layers.21.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
499
+ "model.layers.21.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
500
+ "model.layers.21.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
501
+ "model.layers.21.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
502
+ "model.layers.21.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
503
+ "model.layers.21.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
504
+ "model.layers.21.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
505
+ "model.layers.21.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
506
+ "model.layers.21.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
507
+ "model.layers.21.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
508
+ "model.layers.21.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
509
+ "model.layers.21.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
510
+ "model.layers.21.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
511
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
512
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
513
+ "model.layers.22.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
514
+ "model.layers.22.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
515
+ "model.layers.22.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
516
+ "model.layers.22.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
517
+ "model.layers.22.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
518
+ "model.layers.22.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
519
+ "model.layers.22.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
520
+ "model.layers.22.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
521
+ "model.layers.22.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
522
+ "model.layers.22.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
523
+ "model.layers.22.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
524
+ "model.layers.22.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
525
+ "model.layers.22.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
526
+ "model.layers.22.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
527
+ "model.layers.22.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
528
+ "model.layers.22.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
529
+ "model.layers.22.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
530
+ "model.layers.22.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
531
+ "model.layers.22.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
532
+ "model.layers.22.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
533
+ "model.layers.22.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
534
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
535
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
536
+ "model.layers.23.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
537
+ "model.layers.23.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
538
+ "model.layers.23.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
539
+ "model.layers.23.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
540
+ "model.layers.23.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
541
+ "model.layers.23.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
542
+ "model.layers.23.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
543
+ "model.layers.23.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
544
+ "model.layers.23.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
545
+ "model.layers.23.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
546
+ "model.layers.23.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
547
+ "model.layers.23.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
548
+ "model.layers.23.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
549
+ "model.layers.23.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
550
+ "model.layers.23.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
551
+ "model.layers.23.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
552
+ "model.layers.23.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
553
+ "model.layers.23.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
554
+ "model.layers.23.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
555
+ "model.layers.23.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
556
+ "model.layers.23.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
557
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
558
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
559
+ "model.layers.24.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
560
+ "model.layers.24.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
561
+ "model.layers.24.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
562
+ "model.layers.24.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
563
+ "model.layers.24.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
564
+ "model.layers.24.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
565
+ "model.layers.24.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
566
+ "model.layers.24.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
567
+ "model.layers.24.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
568
+ "model.layers.24.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
569
+ "model.layers.24.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
570
+ "model.layers.24.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
571
+ "model.layers.24.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
572
+ "model.layers.24.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
573
+ "model.layers.24.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
574
+ "model.layers.24.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
575
+ "model.layers.24.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
576
+ "model.layers.24.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
577
+ "model.layers.24.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
578
+ "model.layers.24.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
579
+ "model.layers.24.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
580
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
581
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
582
+ "model.layers.25.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
583
+ "model.layers.25.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
584
+ "model.layers.25.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
585
+ "model.layers.25.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
586
+ "model.layers.25.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
587
+ "model.layers.25.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
588
+ "model.layers.25.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
589
+ "model.layers.25.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
590
+ "model.layers.25.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
591
+ "model.layers.25.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
592
+ "model.layers.25.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
593
+ "model.layers.25.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
594
+ "model.layers.25.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
595
+ "model.layers.25.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
596
+ "model.layers.25.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
597
+ "model.layers.25.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
598
+ "model.layers.25.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
599
+ "model.layers.25.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
600
+ "model.layers.25.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
601
+ "model.layers.25.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
602
+ "model.layers.25.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
603
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
604
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
605
+ "model.layers.26.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
606
+ "model.layers.26.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
607
+ "model.layers.26.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
608
+ "model.layers.26.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
609
+ "model.layers.26.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
610
+ "model.layers.26.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
611
+ "model.layers.26.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
612
+ "model.layers.26.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
613
+ "model.layers.26.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
614
+ "model.layers.26.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
615
+ "model.layers.26.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
616
+ "model.layers.26.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
617
+ "model.layers.26.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
618
+ "model.layers.26.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
619
+ "model.layers.26.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
620
+ "model.layers.26.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
621
+ "model.layers.26.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
622
+ "model.layers.26.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
623
+ "model.layers.26.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
624
+ "model.layers.26.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
625
+ "model.layers.26.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
626
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
627
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
628
+ "model.layers.27.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
629
+ "model.layers.27.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
630
+ "model.layers.27.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
631
+ "model.layers.27.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
632
+ "model.layers.27.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
633
+ "model.layers.27.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
634
+ "model.layers.27.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
635
+ "model.layers.27.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
636
+ "model.layers.27.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
637
+ "model.layers.27.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
638
+ "model.layers.27.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
639
+ "model.layers.27.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
640
+ "model.layers.27.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
641
+ "model.layers.27.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
642
+ "model.layers.27.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
643
+ "model.layers.27.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
644
+ "model.layers.27.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
645
+ "model.layers.27.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
646
+ "model.layers.27.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
647
+ "model.layers.27.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
648
+ "model.layers.27.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
649
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
650
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
651
+ "model.layers.28.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
652
+ "model.layers.28.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
653
+ "model.layers.28.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
654
+ "model.layers.28.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
655
+ "model.layers.28.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
656
+ "model.layers.28.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
657
+ "model.layers.28.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
658
+ "model.layers.28.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
659
+ "model.layers.28.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
660
+ "model.layers.28.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
661
+ "model.layers.28.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
662
+ "model.layers.28.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
663
+ "model.layers.28.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
664
+ "model.layers.28.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
665
+ "model.layers.28.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
666
+ "model.layers.28.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
667
+ "model.layers.28.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
668
+ "model.layers.28.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
669
+ "model.layers.28.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
670
+ "model.layers.28.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
671
+ "model.layers.28.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
672
+ "model.layers.28.input_layernorm.weight": "model-00001-of-00002.safetensors",
673
+ "model.layers.28.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
674
+ "model.layers.29.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
675
+ "model.layers.29.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
676
+ "model.layers.29.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
677
+ "model.layers.29.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
678
+ "model.layers.29.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
679
+ "model.layers.29.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
680
+ "model.layers.29.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
681
+ "model.layers.29.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
682
+ "model.layers.29.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
683
+ "model.layers.29.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
684
+ "model.layers.29.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
685
+ "model.layers.29.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
686
+ "model.layers.29.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
687
+ "model.layers.29.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
688
+ "model.layers.29.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
689
+ "model.layers.29.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
690
+ "model.layers.29.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
691
+ "model.layers.29.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
692
+ "model.layers.29.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
693
+ "model.layers.29.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
694
+ "model.layers.29.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
695
+ "model.layers.29.input_layernorm.weight": "model-00001-of-00002.safetensors",
696
+ "model.layers.29.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
697
+ "model.layers.30.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
698
+ "model.layers.30.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
699
+ "model.layers.30.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
700
+ "model.layers.30.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
701
+ "model.layers.30.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
702
+ "model.layers.30.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
703
+ "model.layers.30.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
704
+ "model.layers.30.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
705
+ "model.layers.30.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
706
+ "model.layers.30.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
707
+ "model.layers.30.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
708
+ "model.layers.30.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
709
+ "model.layers.30.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
710
+ "model.layers.30.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
711
+ "model.layers.30.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
712
+ "model.layers.30.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
713
+ "model.layers.30.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
714
+ "model.layers.30.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
715
+ "model.layers.30.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
716
+ "model.layers.30.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
717
+ "model.layers.30.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
718
+ "model.layers.30.input_layernorm.weight": "model-00001-of-00002.safetensors",
719
+ "model.layers.30.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
720
+ "model.layers.31.self_attn.q_proj.qweight": "model-00001-of-00002.safetensors",
721
+ "model.layers.31.self_attn.q_proj.qzeros": "model-00001-of-00002.safetensors",
722
+ "model.layers.31.self_attn.q_proj.scales": "model-00001-of-00002.safetensors",
723
+ "model.layers.31.self_attn.k_proj.qweight": "model-00001-of-00002.safetensors",
724
+ "model.layers.31.self_attn.k_proj.qzeros": "model-00001-of-00002.safetensors",
725
+ "model.layers.31.self_attn.k_proj.scales": "model-00001-of-00002.safetensors",
726
+ "model.layers.31.self_attn.v_proj.qweight": "model-00001-of-00002.safetensors",
727
+ "model.layers.31.self_attn.v_proj.qzeros": "model-00001-of-00002.safetensors",
728
+ "model.layers.31.self_attn.v_proj.scales": "model-00001-of-00002.safetensors",
729
+ "model.layers.31.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
730
+ "model.layers.31.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
731
+ "model.layers.31.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
732
+ "model.layers.31.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
733
+ "model.layers.31.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
734
+ "model.layers.31.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
735
+ "model.layers.31.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
736
+ "model.layers.31.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
737
+ "model.layers.31.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
738
+ "model.layers.31.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
739
+ "model.layers.31.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
740
+ "model.layers.31.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
741
+ "model.layers.31.input_layernorm.weight": "model-00001-of-00002.safetensors",
742
+ "model.layers.31.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
743
+ "model.norm.weight": "model-00001-of-00002.safetensors",
744
+ "lm_head.weight": "model-00002-of-00002.safetensors"
745
+ }
746
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ }
16
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2062 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|reserved_special_token_2|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_3|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|reserved_special_token_4|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|reserved_special_token_5|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_6|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_7|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_8|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_9|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_10|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_11|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_12|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_13|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_14|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_15|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_16|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_17|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_18|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_19|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_20|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_21|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_22|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_23|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_24|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_25|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_26|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_27|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_28|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_29|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_30|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_31|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_32|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_33|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_34|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_35|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_36|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_37|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_38|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_39|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_40|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_41|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_42|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_43|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_44|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_45|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_46|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_47|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_48|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_49|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_50|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_51|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_52|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_53|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_54|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_55|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_56|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_57|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_58|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_59|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_60|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_61|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_62|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_63|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_64|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_65|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_66|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_67|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_68|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_69|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_70|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_71|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_72|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_73|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_74|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_75|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_76|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_77|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_78|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_79|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_80|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_81|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_82|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_83|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_84|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_85|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_86|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_87|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_88|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_89|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_90|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_91|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_92|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_93|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_94|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_95|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_96|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_97|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_98|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_99|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_100|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_101|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_102|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_103|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_104|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_105|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_106|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_107|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_108|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_109|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_110|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_111|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_112|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_113|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_114|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_115|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_116|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_117|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_118|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_119|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_120|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_121|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_122|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_123|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_124|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_125|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_126|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_127|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_128|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_129|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_130|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_131|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_132|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_133|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_134|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_135|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_136|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_137|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_138|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_139|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_140|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_141|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_142|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_143|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_144|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_145|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_146|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_147|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_148|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_149|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_150|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_151|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_152|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_153|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_154|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_155|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_156|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_157|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_158|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_159|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_160|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_161|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_162|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_163|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_164|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_165|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_166|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_167|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_168|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_169|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_170|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_171|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_172|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_173|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_174|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_175|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_176|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_177|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_178|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_179|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_180|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_181|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_182|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_183|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_184|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_185|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_186|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_187|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_188|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_189|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_190|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_191|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_192|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_193|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_194|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_195|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_196|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_197|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_198|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_199|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_200|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_201|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_202|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_203|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_204|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_205|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_206|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_207|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_208|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_209|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_210|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_211|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_212|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_213|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_214|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_215|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_216|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_217|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_218|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_219|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_220|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_221|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_222|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_223|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_224|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_225|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_226|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_227|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_228|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_229|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_230|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_231|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_232|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_233|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_234|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_235|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_236|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_237|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_238|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_239|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_240|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_241|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_242|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_243|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_244|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_245|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_246|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_247|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_248|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_249|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_250|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "model_input_names": [
2057
+ "input_ids",
2058
+ "attention_mask"
2059
+ ],
2060
+ "model_max_length": 1000000000000000019884624838656,
2061
+ "tokenizer_class": "PreTrainedTokenizerFast"
2062
+ }