upload file
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- 1_Pooling/config.json +7 -0
- 2_Dense/config.json +6 -0
- 2_Dense/pytorch_model.bin +3 -0
- README.md +1187 -1
- config.json +31 -0
- img/matryoshka-small.gif +3 -0
- modules.json +20 -0
- pytorch_model.bin +3 -0
- result/acge_text_embedding_a10_bf16/AFQMC.json +20 -0
- result/acge_text_embedding_a10_bf16/ATEC.json +20 -0
- result/acge_text_embedding_a10_bf16/AmazonReviewsClassification.json +25 -0
- result/acge_text_embedding_a10_bf16/BQ.json +20 -0
- result/acge_text_embedding_a10_bf16/CLSClusteringP2P.json +10 -0
- result/acge_text_embedding_a10_bf16/CLSClusteringS2S.json +10 -0
- result/acge_text_embedding_a10_bf16/CMedQAv1.json +10 -0
- result/acge_text_embedding_a10_bf16/CMedQAv2.json +10 -0
- result/acge_text_embedding_a10_bf16/CmedqaRetrieval.json +38 -0
- result/acge_text_embedding_a10_bf16/Cmnli.json +49 -0
- result/acge_text_embedding_a10_bf16/CovidRetrieval.json +38 -0
- result/acge_text_embedding_a10_bf16/DuRetrieval.json +38 -0
- result/acge_text_embedding_a10_bf16/EcomRetrieval.json +38 -0
- result/acge_text_embedding_a10_bf16/IFlyTek.json +13 -0
- result/acge_text_embedding_a10_bf16/JDReview.json +15 -0
- result/acge_text_embedding_a10_bf16/LCQMC.json +20 -0
- result/acge_text_embedding_a10_bf16/MMarcoReranking.json +10 -0
- result/acge_text_embedding_a10_bf16/MMarcoRetrieval.json +38 -0
- result/acge_text_embedding_a10_bf16/MassiveIntentClassification.json +25 -0
- result/acge_text_embedding_a10_bf16/MassiveScenarioClassification.json +25 -0
- result/acge_text_embedding_a10_bf16/MedicalRetrieval.json +38 -0
- result/acge_text_embedding_a10_bf16/MultilingualSentiment.json +13 -0
- result/acge_text_embedding_a10_bf16/Ocnli.json +49 -0
- result/acge_text_embedding_a10_bf16/OnlineShopping.json +15 -0
- result/acge_text_embedding_a10_bf16/PAWSX.json +20 -0
- result/acge_text_embedding_a10_bf16/QBQTC.json +20 -0
- result/acge_text_embedding_a10_bf16/STS22.json +22 -0
- result/acge_text_embedding_a10_bf16/STSB.json +20 -0
- result/acge_text_embedding_a10_bf16/T2Reranking.json +10 -0
- result/acge_text_embedding_a10_bf16/T2Retrieval.json +38 -0
- result/acge_text_embedding_a10_bf16/TNews.json +13 -0
- result/acge_text_embedding_a10_bf16/ThuNewsClusteringP2P.json +10 -0
- result/acge_text_embedding_a10_bf16/ThuNewsClusteringS2S.json +10 -0
- result/acge_text_embedding_a10_bf16/VideoRetrieval.json +38 -0
- result/acge_text_embedding_a10_bf16/Waimai.json +15 -0
- result/acge_text_embedding_bf16/AFQMC.json +20 -0
- result/acge_text_embedding_bf16/ATEC.json +20 -0
- result/acge_text_embedding_bf16/AmazonReviewsClassification.json +25 -0
- result/acge_text_embedding_bf16/BQ.json +20 -0
- result/acge_text_embedding_bf16/CLSClusteringP2P.json +10 -0
- result/acge_text_embedding_bf16/CLSClusteringS2S.json +10 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
img/matryoshka-small.gif filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"in_features": 1024,
|
3 |
+
"out_features": 1792,
|
4 |
+
"bias": true,
|
5 |
+
"activation_function": "torch.nn.modules.linear.Identity"
|
6 |
+
}
|
2_Dense/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9d3b5ed4c0c36109bb0f29fecd7450fb603d10dd58a0ee82811d1667ec83291
|
3 |
+
size 3674687
|
README.md
CHANGED
@@ -1,3 +1,1189 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- mteb
|
5 |
+
- sentence-transformers
|
6 |
+
- feature-extraction
|
7 |
+
- sentence-similarity
|
8 |
+
model-index:
|
9 |
+
- name: acge_text_embedding
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: STS
|
13 |
+
dataset:
|
14 |
+
type: C-MTEB/AFQMC
|
15 |
+
name: MTEB AFQMC
|
16 |
+
config: default
|
17 |
+
split: validation
|
18 |
+
revision: b44c3b011063adb25877c13823db83bb193913c4
|
19 |
+
metrics:
|
20 |
+
- type: cos_sim_pearson
|
21 |
+
value: 54.03219651150428
|
22 |
+
- type: cos_sim_spearman
|
23 |
+
value: 58.80567952355933
|
24 |
+
- type: euclidean_pearson
|
25 |
+
value: 57.47052075207808
|
26 |
+
- type: euclidean_spearman
|
27 |
+
value: 58.80429232297114
|
28 |
+
- type: manhattan_pearson
|
29 |
+
value: 57.46163912433917
|
30 |
+
- type: manhattan_spearman
|
31 |
+
value: 58.797778532121
|
32 |
+
- task:
|
33 |
+
type: STS
|
34 |
+
dataset:
|
35 |
+
type: C-MTEB/ATEC
|
36 |
+
name: MTEB ATEC
|
37 |
+
config: default
|
38 |
+
split: test
|
39 |
+
revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
|
40 |
+
metrics:
|
41 |
+
- type: cos_sim_pearson
|
42 |
+
value: 53.523171963746854
|
43 |
+
- type: cos_sim_spearman
|
44 |
+
value: 57.94610819724817
|
45 |
+
- type: euclidean_pearson
|
46 |
+
value: 61.16974418403869
|
47 |
+
- type: euclidean_spearman
|
48 |
+
value: 57.94681861980281
|
49 |
+
- type: manhattan_pearson
|
50 |
+
value: 61.167825359334515
|
51 |
+
- type: manhattan_spearman
|
52 |
+
value: 57.94540903298445
|
53 |
+
- task:
|
54 |
+
type: Classification
|
55 |
+
dataset:
|
56 |
+
type: mteb/amazon_reviews_multi
|
57 |
+
name: MTEB AmazonReviewsClassification (zh)
|
58 |
+
config: zh
|
59 |
+
split: test
|
60 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
61 |
+
metrics:
|
62 |
+
- type: accuracy
|
63 |
+
value: 48.556
|
64 |
+
- type: f1
|
65 |
+
value: 46.61852566163211
|
66 |
+
- task:
|
67 |
+
type: STS
|
68 |
+
dataset:
|
69 |
+
type: C-MTEB/BQ
|
70 |
+
name: MTEB BQ
|
71 |
+
config: default
|
72 |
+
split: test
|
73 |
+
revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
|
74 |
+
metrics:
|
75 |
+
- type: cos_sim_pearson
|
76 |
+
value: 68.26963267181252
|
77 |
+
- type: cos_sim_spearman
|
78 |
+
value: 70.36696156869363
|
79 |
+
- type: euclidean_pearson
|
80 |
+
value: 69.42591718370763
|
81 |
+
- type: euclidean_spearman
|
82 |
+
value: 70.3677583116469
|
83 |
+
- type: manhattan_pearson
|
84 |
+
value: 69.40127857737215
|
85 |
+
- type: manhattan_spearman
|
86 |
+
value: 70.34572662526428
|
87 |
+
- task:
|
88 |
+
type: Clustering
|
89 |
+
dataset:
|
90 |
+
type: C-MTEB/CLSClusteringP2P
|
91 |
+
name: MTEB CLSClusteringP2P
|
92 |
+
config: default
|
93 |
+
split: test
|
94 |
+
revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
|
95 |
+
metrics:
|
96 |
+
- type: v_measure
|
97 |
+
value: 46.54685387179774
|
98 |
+
- task:
|
99 |
+
type: Clustering
|
100 |
+
dataset:
|
101 |
+
type: C-MTEB/CLSClusteringS2S
|
102 |
+
name: MTEB CLSClusteringS2S
|
103 |
+
config: default
|
104 |
+
split: test
|
105 |
+
revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
|
106 |
+
metrics:
|
107 |
+
- type: v_measure
|
108 |
+
value: 44.45602575811581
|
109 |
+
- task:
|
110 |
+
type: Reranking
|
111 |
+
dataset:
|
112 |
+
type: C-MTEB/CMedQAv1-reranking
|
113 |
+
name: MTEB CMedQAv1
|
114 |
+
config: default
|
115 |
+
split: test
|
116 |
+
revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
|
117 |
+
metrics:
|
118 |
+
- type: map
|
119 |
+
value: 88.4576468720639
|
120 |
+
- type: mrr
|
121 |
+
value: 90.90595238095237
|
122 |
+
- task:
|
123 |
+
type: Reranking
|
124 |
+
dataset:
|
125 |
+
type: C-MTEB/CMedQAv2-reranking
|
126 |
+
name: MTEB CMedQAv2
|
127 |
+
config: default
|
128 |
+
split: test
|
129 |
+
revision: 23d186750531a14a0357ca22cd92d712fd512ea0
|
130 |
+
metrics:
|
131 |
+
- type: map
|
132 |
+
value: 88.71413673867269
|
133 |
+
- type: mrr
|
134 |
+
value: 91.19265873015873
|
135 |
+
- task:
|
136 |
+
type: Retrieval
|
137 |
+
dataset:
|
138 |
+
type: C-MTEB/CmedqaRetrieval
|
139 |
+
name: MTEB CmedqaRetrieval
|
140 |
+
config: default
|
141 |
+
split: dev
|
142 |
+
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
|
143 |
+
metrics:
|
144 |
+
- type: map_at_1
|
145 |
+
value: 26.825
|
146 |
+
- type: map_at_10
|
147 |
+
value: 39.959
|
148 |
+
- type: map_at_100
|
149 |
+
value: 41.861
|
150 |
+
- type: map_at_1000
|
151 |
+
value: 41.963
|
152 |
+
- type: map_at_3
|
153 |
+
value: 35.357
|
154 |
+
- type: map_at_5
|
155 |
+
value: 38.001000000000005
|
156 |
+
- type: mrr_at_1
|
157 |
+
value: 40.585
|
158 |
+
- type: mrr_at_10
|
159 |
+
value: 48.802
|
160 |
+
- type: mrr_at_100
|
161 |
+
value: 49.779
|
162 |
+
- type: mrr_at_1000
|
163 |
+
value: 49.819
|
164 |
+
- type: mrr_at_3
|
165 |
+
value: 46.095000000000006
|
166 |
+
- type: mrr_at_5
|
167 |
+
value: 47.678
|
168 |
+
- type: ndcg_at_1
|
169 |
+
value: 40.585
|
170 |
+
- type: ndcg_at_10
|
171 |
+
value: 46.758
|
172 |
+
- type: ndcg_at_100
|
173 |
+
value: 53.957
|
174 |
+
- type: ndcg_at_1000
|
175 |
+
value: 55.656000000000006
|
176 |
+
- type: ndcg_at_3
|
177 |
+
value: 40.961
|
178 |
+
- type: ndcg_at_5
|
179 |
+
value: 43.564
|
180 |
+
- type: precision_at_1
|
181 |
+
value: 40.585
|
182 |
+
- type: precision_at_10
|
183 |
+
value: 10.424999999999999
|
184 |
+
- type: precision_at_100
|
185 |
+
value: 1.625
|
186 |
+
- type: precision_at_1000
|
187 |
+
value: 0.184
|
188 |
+
- type: precision_at_3
|
189 |
+
value: 23.114
|
190 |
+
- type: precision_at_5
|
191 |
+
value: 17.024
|
192 |
+
- type: recall_at_1
|
193 |
+
value: 26.825
|
194 |
+
- type: recall_at_10
|
195 |
+
value: 57.909
|
196 |
+
- type: recall_at_100
|
197 |
+
value: 87.375
|
198 |
+
- type: recall_at_1000
|
199 |
+
value: 98.695
|
200 |
+
- type: recall_at_3
|
201 |
+
value: 40.754000000000005
|
202 |
+
- type: recall_at_5
|
203 |
+
value: 48.472
|
204 |
+
- task:
|
205 |
+
type: PairClassification
|
206 |
+
dataset:
|
207 |
+
type: C-MTEB/CMNLI
|
208 |
+
name: MTEB Cmnli
|
209 |
+
config: default
|
210 |
+
split: validation
|
211 |
+
revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
|
212 |
+
metrics:
|
213 |
+
- type: cos_sim_accuracy
|
214 |
+
value: 83.4155141310884
|
215 |
+
- type: cos_sim_ap
|
216 |
+
value: 90.49006000181046
|
217 |
+
- type: cos_sim_f1
|
218 |
+
value: 84.28797826579125
|
219 |
+
- type: cos_sim_precision
|
220 |
+
value: 81.69848584595128
|
221 |
+
- type: cos_sim_recall
|
222 |
+
value: 87.04699555763385
|
223 |
+
- type: dot_accuracy
|
224 |
+
value: 83.40348767288035
|
225 |
+
- type: dot_ap
|
226 |
+
value: 90.50667776818787
|
227 |
+
- type: dot_f1
|
228 |
+
value: 84.31853669417802
|
229 |
+
- type: dot_precision
|
230 |
+
value: 80.61420345489442
|
231 |
+
- type: dot_recall
|
232 |
+
value: 88.379705400982
|
233 |
+
- type: euclidean_accuracy
|
234 |
+
value: 83.43956704750451
|
235 |
+
- type: euclidean_ap
|
236 |
+
value: 90.48869698176196
|
237 |
+
- type: euclidean_f1
|
238 |
+
value: 84.32616081540203
|
239 |
+
- type: euclidean_precision
|
240 |
+
value: 81.77026136613222
|
241 |
+
- type: euclidean_recall
|
242 |
+
value: 87.04699555763385
|
243 |
+
- type: manhattan_accuracy
|
244 |
+
value: 83.55983162958509
|
245 |
+
- type: manhattan_ap
|
246 |
+
value: 90.47972486190912
|
247 |
+
- type: manhattan_f1
|
248 |
+
value: 84.42325158946412
|
249 |
+
- type: manhattan_precision
|
250 |
+
value: 82.0569410726109
|
251 |
+
- type: manhattan_recall
|
252 |
+
value: 86.93009118541033
|
253 |
+
- type: max_accuracy
|
254 |
+
value: 83.55983162958509
|
255 |
+
- type: max_ap
|
256 |
+
value: 90.50667776818787
|
257 |
+
- type: max_f1
|
258 |
+
value: 84.42325158946412
|
259 |
+
- task:
|
260 |
+
type: Retrieval
|
261 |
+
dataset:
|
262 |
+
type: C-MTEB/CovidRetrieval
|
263 |
+
name: MTEB CovidRetrieval
|
264 |
+
config: default
|
265 |
+
split: dev
|
266 |
+
revision: 1271c7809071a13532e05f25fb53511ffce77117
|
267 |
+
metrics:
|
268 |
+
- type: map_at_1
|
269 |
+
value: 67.597
|
270 |
+
- type: map_at_10
|
271 |
+
value: 76.545
|
272 |
+
- type: map_at_100
|
273 |
+
value: 76.893
|
274 |
+
- type: map_at_1000
|
275 |
+
value: 76.897
|
276 |
+
- type: map_at_3
|
277 |
+
value: 74.807
|
278 |
+
- type: map_at_5
|
279 |
+
value: 75.895
|
280 |
+
- type: mrr_at_1
|
281 |
+
value: 67.861
|
282 |
+
- type: mrr_at_10
|
283 |
+
value: 76.545
|
284 |
+
- type: mrr_at_100
|
285 |
+
value: 76.893
|
286 |
+
- type: mrr_at_1000
|
287 |
+
value: 76.897
|
288 |
+
- type: mrr_at_3
|
289 |
+
value: 74.886
|
290 |
+
- type: mrr_at_5
|
291 |
+
value: 75.934
|
292 |
+
- type: ndcg_at_1
|
293 |
+
value: 67.861
|
294 |
+
- type: ndcg_at_10
|
295 |
+
value: 80.417
|
296 |
+
- type: ndcg_at_100
|
297 |
+
value: 81.928
|
298 |
+
- type: ndcg_at_1000
|
299 |
+
value: 82.038
|
300 |
+
- type: ndcg_at_3
|
301 |
+
value: 77.025
|
302 |
+
- type: ndcg_at_5
|
303 |
+
value: 78.94099999999999
|
304 |
+
- type: precision_at_1
|
305 |
+
value: 67.861
|
306 |
+
- type: precision_at_10
|
307 |
+
value: 9.336
|
308 |
+
- type: precision_at_100
|
309 |
+
value: 1.001
|
310 |
+
- type: precision_at_1000
|
311 |
+
value: 0.101
|
312 |
+
- type: precision_at_3
|
313 |
+
value: 27.959
|
314 |
+
- type: precision_at_5
|
315 |
+
value: 17.745
|
316 |
+
- type: recall_at_1
|
317 |
+
value: 67.597
|
318 |
+
- type: recall_at_10
|
319 |
+
value: 92.308
|
320 |
+
- type: recall_at_100
|
321 |
+
value: 99.05199999999999
|
322 |
+
- type: recall_at_1000
|
323 |
+
value: 99.895
|
324 |
+
- type: recall_at_3
|
325 |
+
value: 83.325
|
326 |
+
- type: recall_at_5
|
327 |
+
value: 87.908
|
328 |
+
- task:
|
329 |
+
type: Retrieval
|
330 |
+
dataset:
|
331 |
+
type: C-MTEB/DuRetrieval
|
332 |
+
name: MTEB DuRetrieval
|
333 |
+
config: default
|
334 |
+
split: dev
|
335 |
+
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
|
336 |
+
metrics:
|
337 |
+
- type: map_at_1
|
338 |
+
value: 25.574
|
339 |
+
- type: map_at_10
|
340 |
+
value: 78.493
|
341 |
+
- type: map_at_100
|
342 |
+
value: 81.384
|
343 |
+
- type: map_at_1000
|
344 |
+
value: 81.429
|
345 |
+
- type: map_at_3
|
346 |
+
value: 54.107000000000006
|
347 |
+
- type: map_at_5
|
348 |
+
value: 68.755
|
349 |
+
- type: mrr_at_1
|
350 |
+
value: 89.2
|
351 |
+
- type: mrr_at_10
|
352 |
+
value: 92.567
|
353 |
+
- type: mrr_at_100
|
354 |
+
value: 92.642
|
355 |
+
- type: mrr_at_1000
|
356 |
+
value: 92.646
|
357 |
+
- type: mrr_at_3
|
358 |
+
value: 92.258
|
359 |
+
- type: mrr_at_5
|
360 |
+
value: 92.458
|
361 |
+
- type: ndcg_at_1
|
362 |
+
value: 89.2
|
363 |
+
- type: ndcg_at_10
|
364 |
+
value: 86.084
|
365 |
+
- type: ndcg_at_100
|
366 |
+
value: 89.053
|
367 |
+
- type: ndcg_at_1000
|
368 |
+
value: 89.484
|
369 |
+
- type: ndcg_at_3
|
370 |
+
value: 84.898
|
371 |
+
- type: ndcg_at_5
|
372 |
+
value: 84.078
|
373 |
+
- type: precision_at_1
|
374 |
+
value: 89.2
|
375 |
+
- type: precision_at_10
|
376 |
+
value: 41.345
|
377 |
+
- type: precision_at_100
|
378 |
+
value: 4.779
|
379 |
+
- type: precision_at_1000
|
380 |
+
value: 0.488
|
381 |
+
- type: precision_at_3
|
382 |
+
value: 76.167
|
383 |
+
- type: precision_at_5
|
384 |
+
value: 64.7
|
385 |
+
- type: recall_at_1
|
386 |
+
value: 25.574
|
387 |
+
- type: recall_at_10
|
388 |
+
value: 87.153
|
389 |
+
- type: recall_at_100
|
390 |
+
value: 96.829
|
391 |
+
- type: recall_at_1000
|
392 |
+
value: 99.11999999999999
|
393 |
+
- type: recall_at_3
|
394 |
+
value: 56.421
|
395 |
+
- type: recall_at_5
|
396 |
+
value: 73.7
|
397 |
+
- task:
|
398 |
+
type: Retrieval
|
399 |
+
dataset:
|
400 |
+
type: C-MTEB/EcomRetrieval
|
401 |
+
name: MTEB EcomRetrieval
|
402 |
+
config: default
|
403 |
+
split: dev
|
404 |
+
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
|
405 |
+
metrics:
|
406 |
+
- type: map_at_1
|
407 |
+
value: 52.0
|
408 |
+
- type: map_at_10
|
409 |
+
value: 62.553000000000004
|
410 |
+
- type: map_at_100
|
411 |
+
value: 63.048
|
412 |
+
- type: map_at_1000
|
413 |
+
value: 63.065000000000005
|
414 |
+
- type: map_at_3
|
415 |
+
value: 60.233000000000004
|
416 |
+
- type: map_at_5
|
417 |
+
value: 61.712999999999994
|
418 |
+
- type: mrr_at_1
|
419 |
+
value: 52.0
|
420 |
+
- type: mrr_at_10
|
421 |
+
value: 62.553000000000004
|
422 |
+
- type: mrr_at_100
|
423 |
+
value: 63.048
|
424 |
+
- type: mrr_at_1000
|
425 |
+
value: 63.065000000000005
|
426 |
+
- type: mrr_at_3
|
427 |
+
value: 60.233000000000004
|
428 |
+
- type: mrr_at_5
|
429 |
+
value: 61.712999999999994
|
430 |
+
- type: ndcg_at_1
|
431 |
+
value: 52.0
|
432 |
+
- type: ndcg_at_10
|
433 |
+
value: 67.51599999999999
|
434 |
+
- type: ndcg_at_100
|
435 |
+
value: 69.896
|
436 |
+
- type: ndcg_at_1000
|
437 |
+
value: 70.281
|
438 |
+
- type: ndcg_at_3
|
439 |
+
value: 62.82600000000001
|
440 |
+
- type: ndcg_at_5
|
441 |
+
value: 65.498
|
442 |
+
- type: precision_at_1
|
443 |
+
value: 52.0
|
444 |
+
- type: precision_at_10
|
445 |
+
value: 8.3
|
446 |
+
- type: precision_at_100
|
447 |
+
value: 0.941
|
448 |
+
- type: precision_at_1000
|
449 |
+
value: 0.097
|
450 |
+
- type: precision_at_3
|
451 |
+
value: 23.433
|
452 |
+
- type: precision_at_5
|
453 |
+
value: 15.36
|
454 |
+
- type: recall_at_1
|
455 |
+
value: 52.0
|
456 |
+
- type: recall_at_10
|
457 |
+
value: 83.0
|
458 |
+
- type: recall_at_100
|
459 |
+
value: 94.1
|
460 |
+
- type: recall_at_1000
|
461 |
+
value: 97.0
|
462 |
+
- type: recall_at_3
|
463 |
+
value: 70.3
|
464 |
+
- type: recall_at_5
|
465 |
+
value: 76.8
|
466 |
+
- task:
|
467 |
+
type: Classification
|
468 |
+
dataset:
|
469 |
+
type: C-MTEB/IFlyTek-classification
|
470 |
+
name: MTEB IFlyTek
|
471 |
+
config: default
|
472 |
+
split: validation
|
473 |
+
revision: 421605374b29664c5fc098418fe20ada9bd55f8a
|
474 |
+
metrics:
|
475 |
+
- type: accuracy
|
476 |
+
value: 51.76606387071951
|
477 |
+
- type: f1
|
478 |
+
value: 40.25725744367441
|
479 |
+
- task:
|
480 |
+
type: Classification
|
481 |
+
dataset:
|
482 |
+
type: C-MTEB/JDReview-classification
|
483 |
+
name: MTEB JDReview
|
484 |
+
config: default
|
485 |
+
split: test
|
486 |
+
revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
|
487 |
+
metrics:
|
488 |
+
- type: accuracy
|
489 |
+
value: 86.69793621013133
|
490 |
+
- type: ap
|
491 |
+
value: 55.46718958939327
|
492 |
+
- type: f1
|
493 |
+
value: 81.48228915952436
|
494 |
+
- task:
|
495 |
+
type: STS
|
496 |
+
dataset:
|
497 |
+
type: C-MTEB/LCQMC
|
498 |
+
name: MTEB LCQMC
|
499 |
+
config: default
|
500 |
+
split: test
|
501 |
+
revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
|
502 |
+
metrics:
|
503 |
+
- type: cos_sim_pearson
|
504 |
+
value: 71.13755846688528
|
505 |
+
- type: cos_sim_spearman
|
506 |
+
value: 78.17322744116031
|
507 |
+
- type: euclidean_pearson
|
508 |
+
value: 77.48740502819294
|
509 |
+
- type: euclidean_spearman
|
510 |
+
value: 78.17553979551616
|
511 |
+
- type: manhattan_pearson
|
512 |
+
value: 77.47671561749276
|
513 |
+
- type: manhattan_spearman
|
514 |
+
value: 78.16780681181362
|
515 |
+
- task:
|
516 |
+
type: Reranking
|
517 |
+
dataset:
|
518 |
+
type: C-MTEB/Mmarco-reranking
|
519 |
+
name: MTEB MMarcoReranking
|
520 |
+
config: default
|
521 |
+
split: dev
|
522 |
+
revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
|
523 |
+
metrics:
|
524 |
+
- type: map
|
525 |
+
value: 27.054392822906316
|
526 |
+
- type: mrr
|
527 |
+
value: 29.001190476190473
|
528 |
+
- task:
|
529 |
+
type: Retrieval
|
530 |
+
dataset:
|
531 |
+
type: C-MTEB/MMarcoRetrieval
|
532 |
+
name: MTEB MMarcoRetrieval
|
533 |
+
config: default
|
534 |
+
split: dev
|
535 |
+
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
|
536 |
+
metrics:
|
537 |
+
- type: map_at_1
|
538 |
+
value: 65.62599999999999
|
539 |
+
- type: map_at_10
|
540 |
+
value: 74.749
|
541 |
+
- type: map_at_100
|
542 |
+
value: 75.091
|
543 |
+
- type: map_at_1000
|
544 |
+
value: 75.103
|
545 |
+
- type: map_at_3
|
546 |
+
value: 73.007
|
547 |
+
- type: map_at_5
|
548 |
+
value: 74.124
|
549 |
+
- type: mrr_at_1
|
550 |
+
value: 67.894
|
551 |
+
- type: mrr_at_10
|
552 |
+
value: 75.374
|
553 |
+
- type: mrr_at_100
|
554 |
+
value: 75.67399999999999
|
555 |
+
- type: mrr_at_1000
|
556 |
+
value: 75.685
|
557 |
+
- type: mrr_at_3
|
558 |
+
value: 73.868
|
559 |
+
- type: mrr_at_5
|
560 |
+
value: 74.83
|
561 |
+
- type: ndcg_at_1
|
562 |
+
value: 67.894
|
563 |
+
- type: ndcg_at_10
|
564 |
+
value: 78.414
|
565 |
+
- type: ndcg_at_100
|
566 |
+
value: 79.947
|
567 |
+
- type: ndcg_at_1000
|
568 |
+
value: 80.265
|
569 |
+
- type: ndcg_at_3
|
570 |
+
value: 75.12
|
571 |
+
- type: ndcg_at_5
|
572 |
+
value: 76.999
|
573 |
+
- type: precision_at_1
|
574 |
+
value: 67.894
|
575 |
+
- type: precision_at_10
|
576 |
+
value: 9.47
|
577 |
+
- type: precision_at_100
|
578 |
+
value: 1.023
|
579 |
+
- type: precision_at_1000
|
580 |
+
value: 0.105
|
581 |
+
- type: precision_at_3
|
582 |
+
value: 28.333000000000002
|
583 |
+
- type: precision_at_5
|
584 |
+
value: 17.989
|
585 |
+
- type: recall_at_1
|
586 |
+
value: 65.62599999999999
|
587 |
+
- type: recall_at_10
|
588 |
+
value: 89.063
|
589 |
+
- type: recall_at_100
|
590 |
+
value: 95.99499999999999
|
591 |
+
- type: recall_at_1000
|
592 |
+
value: 98.455
|
593 |
+
- type: recall_at_3
|
594 |
+
value: 80.357
|
595 |
+
- type: recall_at_5
|
596 |
+
value: 84.824
|
597 |
+
- task:
|
598 |
+
type: Classification
|
599 |
+
dataset:
|
600 |
+
type: mteb/amazon_massive_intent
|
601 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
602 |
+
config: zh-CN
|
603 |
+
split: test
|
604 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
605 |
+
metrics:
|
606 |
+
- type: accuracy
|
607 |
+
value: 75.88433086751849
|
608 |
+
- type: f1
|
609 |
+
value: 73.06801290283882
|
610 |
+
- task:
|
611 |
+
type: Classification
|
612 |
+
dataset:
|
613 |
+
type: mteb/amazon_massive_scenario
|
614 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
615 |
+
config: zh-CN
|
616 |
+
split: test
|
617 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
618 |
+
metrics:
|
619 |
+
- type: accuracy
|
620 |
+
value: 78.44317417619366
|
621 |
+
- type: f1
|
622 |
+
value: 78.1407925250533
|
623 |
+
- task:
|
624 |
+
type: Retrieval
|
625 |
+
dataset:
|
626 |
+
type: C-MTEB/MedicalRetrieval
|
627 |
+
name: MTEB MedicalRetrieval
|
628 |
+
config: default
|
629 |
+
split: dev
|
630 |
+
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
|
631 |
+
metrics:
|
632 |
+
- type: map_at_1
|
633 |
+
value: 54.900000000000006
|
634 |
+
- type: map_at_10
|
635 |
+
value: 61.0
|
636 |
+
- type: map_at_100
|
637 |
+
value: 61.549
|
638 |
+
- type: map_at_1000
|
639 |
+
value: 61.590999999999994
|
640 |
+
- type: map_at_3
|
641 |
+
value: 59.516999999999996
|
642 |
+
- type: map_at_5
|
643 |
+
value: 60.267
|
644 |
+
- type: mrr_at_1
|
645 |
+
value: 55.1
|
646 |
+
- type: mrr_at_10
|
647 |
+
value: 61.1
|
648 |
+
- type: mrr_at_100
|
649 |
+
value: 61.649
|
650 |
+
- type: mrr_at_1000
|
651 |
+
value: 61.690999999999995
|
652 |
+
- type: mrr_at_3
|
653 |
+
value: 59.617
|
654 |
+
- type: mrr_at_5
|
655 |
+
value: 60.367000000000004
|
656 |
+
- type: ndcg_at_1
|
657 |
+
value: 54.900000000000006
|
658 |
+
- type: ndcg_at_10
|
659 |
+
value: 64.07000000000001
|
660 |
+
- type: ndcg_at_100
|
661 |
+
value: 66.981
|
662 |
+
- type: ndcg_at_1000
|
663 |
+
value: 68.207
|
664 |
+
- type: ndcg_at_3
|
665 |
+
value: 60.955999999999996
|
666 |
+
- type: ndcg_at_5
|
667 |
+
value: 62.31100000000001
|
668 |
+
- type: precision_at_1
|
669 |
+
value: 54.900000000000006
|
670 |
+
- type: precision_at_10
|
671 |
+
value: 7.380000000000001
|
672 |
+
- type: precision_at_100
|
673 |
+
value: 0.88
|
674 |
+
- type: precision_at_1000
|
675 |
+
value: 0.098
|
676 |
+
- type: precision_at_3
|
677 |
+
value: 21.7
|
678 |
+
- type: precision_at_5
|
679 |
+
value: 13.68
|
680 |
+
- type: recall_at_1
|
681 |
+
value: 54.900000000000006
|
682 |
+
- type: recall_at_10
|
683 |
+
value: 73.8
|
684 |
+
- type: recall_at_100
|
685 |
+
value: 88.0
|
686 |
+
- type: recall_at_1000
|
687 |
+
value: 97.8
|
688 |
+
- type: recall_at_3
|
689 |
+
value: 65.10000000000001
|
690 |
+
- type: recall_at_5
|
691 |
+
value: 68.4
|
692 |
+
- task:
|
693 |
+
type: Classification
|
694 |
+
dataset:
|
695 |
+
type: C-MTEB/MultilingualSentiment-classification
|
696 |
+
name: MTEB MultilingualSentiment
|
697 |
+
config: default
|
698 |
+
split: validation
|
699 |
+
revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
|
700 |
+
metrics:
|
701 |
+
- type: accuracy
|
702 |
+
value: 77.56333333333333
|
703 |
+
- type: f1
|
704 |
+
value: 77.53666660124703
|
705 |
+
- task:
|
706 |
+
type: PairClassification
|
707 |
+
dataset:
|
708 |
+
type: C-MTEB/OCNLI
|
709 |
+
name: MTEB Ocnli
|
710 |
+
config: default
|
711 |
+
split: validation
|
712 |
+
revision: 66e76a618a34d6d565d5538088562851e6daa7ec
|
713 |
+
metrics:
|
714 |
+
- type: cos_sim_accuracy
|
715 |
+
value: 81.10449377368705
|
716 |
+
- type: cos_sim_ap
|
717 |
+
value: 85.16141108141811
|
718 |
+
- type: cos_sim_f1
|
719 |
+
value: 82.97771455666192
|
720 |
+
- type: cos_sim_precision
|
721 |
+
value: 75.30120481927712
|
722 |
+
- type: cos_sim_recall
|
723 |
+
value: 92.39704329461456
|
724 |
+
- type: dot_accuracy
|
725 |
+
value: 81.05035192203573
|
726 |
+
- type: dot_ap
|
727 |
+
value: 85.13568069803823
|
728 |
+
- type: dot_f1
|
729 |
+
value: 83.04038004750595
|
730 |
+
- type: dot_precision
|
731 |
+
value: 75.47495682210709
|
732 |
+
- type: dot_recall
|
733 |
+
value: 92.29144667370645
|
734 |
+
- type: euclidean_accuracy
|
735 |
+
value: 81.10449377368705
|
736 |
+
- type: euclidean_ap
|
737 |
+
value: 85.16341835376645
|
738 |
+
- type: euclidean_f1
|
739 |
+
value: 82.96860133206471
|
740 |
+
- type: euclidean_precision
|
741 |
+
value: 75.4978354978355
|
742 |
+
- type: euclidean_recall
|
743 |
+
value: 92.08025343189018
|
744 |
+
- type: manhattan_accuracy
|
745 |
+
value: 81.15863562533838
|
746 |
+
- type: manhattan_ap
|
747 |
+
value: 85.13388548299352
|
748 |
+
- type: manhattan_f1
|
749 |
+
value: 82.91048348492102
|
750 |
+
- type: manhattan_precision
|
751 |
+
value: 75.83187390542906
|
752 |
+
- type: manhattan_recall
|
753 |
+
value: 91.4466737064414
|
754 |
+
- type: max_accuracy
|
755 |
+
value: 81.15863562533838
|
756 |
+
- type: max_ap
|
757 |
+
value: 85.16341835376645
|
758 |
+
- type: max_f1
|
759 |
+
value: 83.04038004750595
|
760 |
+
- task:
|
761 |
+
type: Classification
|
762 |
+
dataset:
|
763 |
+
type: C-MTEB/OnlineShopping-classification
|
764 |
+
name: MTEB OnlineShopping
|
765 |
+
config: default
|
766 |
+
split: test
|
767 |
+
revision: e610f2ebd179a8fda30ae534c3878750a96db120
|
768 |
+
metrics:
|
769 |
+
- type: accuracy
|
770 |
+
value: 93.75
|
771 |
+
- type: ap
|
772 |
+
value: 91.8757063139003
|
773 |
+
- type: f1
|
774 |
+
value: 93.73901896028437
|
775 |
+
- task:
|
776 |
+
type: STS
|
777 |
+
dataset:
|
778 |
+
type: C-MTEB/PAWSX
|
779 |
+
name: MTEB PAWSX
|
780 |
+
config: default
|
781 |
+
split: test
|
782 |
+
revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
|
783 |
+
metrics:
|
784 |
+
- type: cos_sim_pearson
|
785 |
+
value: 39.15831534609524
|
786 |
+
- type: cos_sim_spearman
|
787 |
+
value: 45.4969633673045
|
788 |
+
- type: euclidean_pearson
|
789 |
+
value: 44.848515043386826
|
790 |
+
- type: euclidean_spearman
|
791 |
+
value: 45.50184060659851
|
792 |
+
- type: manhattan_pearson
|
793 |
+
value: 44.855618769134786
|
794 |
+
- type: manhattan_spearman
|
795 |
+
value: 45.521349632021
|
796 |
+
- task:
|
797 |
+
type: STS
|
798 |
+
dataset:
|
799 |
+
type: C-MTEB/QBQTC
|
800 |
+
name: MTEB QBQTC
|
801 |
+
config: default
|
802 |
+
split: test
|
803 |
+
revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
|
804 |
+
metrics:
|
805 |
+
- type: cos_sim_pearson
|
806 |
+
value: 34.240063381471685
|
807 |
+
- type: cos_sim_spearman
|
808 |
+
value: 37.29810568951238
|
809 |
+
- type: euclidean_pearson
|
810 |
+
value: 35.114630288288694
|
811 |
+
- type: euclidean_spearman
|
812 |
+
value: 37.29224953963422
|
813 |
+
- type: manhattan_pearson
|
814 |
+
value: 35.07429582481541
|
815 |
+
- type: manhattan_spearman
|
816 |
+
value: 37.24006222876743
|
817 |
+
- task:
|
818 |
+
type: STS
|
819 |
+
dataset:
|
820 |
+
type: mteb/sts22-crosslingual-sts
|
821 |
+
name: MTEB STS22 (zh)
|
822 |
+
config: zh
|
823 |
+
split: test
|
824 |
+
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
|
825 |
+
metrics:
|
826 |
+
- type: cos_sim_pearson
|
827 |
+
value: 61.839386292911634
|
828 |
+
- type: cos_sim_spearman
|
829 |
+
value: 67.05632097771566
|
830 |
+
- type: euclidean_pearson
|
831 |
+
value: 65.72031356075829
|
832 |
+
- type: euclidean_spearman
|
833 |
+
value: 67.05823973191457
|
834 |
+
- type: manhattan_pearson
|
835 |
+
value: 65.66073527177826
|
836 |
+
- type: manhattan_spearman
|
837 |
+
value: 67.04221791481658
|
838 |
+
- task:
|
839 |
+
type: STS
|
840 |
+
dataset:
|
841 |
+
type: C-MTEB/STSB
|
842 |
+
name: MTEB STSB
|
843 |
+
config: default
|
844 |
+
split: test
|
845 |
+
revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
|
846 |
+
metrics:
|
847 |
+
- type: cos_sim_pearson
|
848 |
+
value: 81.56195178204662
|
849 |
+
- type: cos_sim_spearman
|
850 |
+
value: 82.73033434099031
|
851 |
+
- type: euclidean_pearson
|
852 |
+
value: 82.49605254478311
|
853 |
+
- type: euclidean_spearman
|
854 |
+
value: 82.72004995354247
|
855 |
+
- type: manhattan_pearson
|
856 |
+
value: 82.48358662476731
|
857 |
+
- type: manhattan_spearman
|
858 |
+
value: 82.70676710419983
|
859 |
+
- task:
|
860 |
+
type: Reranking
|
861 |
+
dataset:
|
862 |
+
type: C-MTEB/T2Reranking
|
863 |
+
name: MTEB T2Reranking
|
864 |
+
config: default
|
865 |
+
split: dev
|
866 |
+
revision: 76631901a18387f85eaa53e5450019b87ad58ef9
|
867 |
+
metrics:
|
868 |
+
- type: map
|
869 |
+
value: 65.9012655137193
|
870 |
+
- type: mrr
|
871 |
+
value: 75.97216177150165
|
872 |
+
- task:
|
873 |
+
type: Retrieval
|
874 |
+
dataset:
|
875 |
+
type: C-MTEB/T2Retrieval
|
876 |
+
name: MTEB T2Retrieval
|
877 |
+
config: default
|
878 |
+
split: dev
|
879 |
+
revision: 8731a845f1bf500a4f111cf1070785c793d10e64
|
880 |
+
metrics:
|
881 |
+
- type: map_at_1
|
882 |
+
value: 27.057
|
883 |
+
- type: map_at_10
|
884 |
+
value: 75.29299999999999
|
885 |
+
- type: map_at_100
|
886 |
+
value: 79.098
|
887 |
+
- type: map_at_1000
|
888 |
+
value: 79.172
|
889 |
+
- type: map_at_3
|
890 |
+
value: 53.049
|
891 |
+
- type: map_at_5
|
892 |
+
value: 65.103
|
893 |
+
- type: mrr_at_1
|
894 |
+
value: 88.822
|
895 |
+
- type: mrr_at_10
|
896 |
+
value: 91.721
|
897 |
+
- type: mrr_at_100
|
898 |
+
value: 91.814
|
899 |
+
- type: mrr_at_1000
|
900 |
+
value: 91.818
|
901 |
+
- type: mrr_at_3
|
902 |
+
value: 91.213
|
903 |
+
- type: mrr_at_5
|
904 |
+
value: 91.544
|
905 |
+
- type: ndcg_at_1
|
906 |
+
value: 88.822
|
907 |
+
- type: ndcg_at_10
|
908 |
+
value: 83.269
|
909 |
+
- type: ndcg_at_100
|
910 |
+
value: 87.259
|
911 |
+
- type: ndcg_at_1000
|
912 |
+
value: 87.938
|
913 |
+
- type: ndcg_at_3
|
914 |
+
value: 84.678
|
915 |
+
- type: ndcg_at_5
|
916 |
+
value: 83.231
|
917 |
+
- type: precision_at_1
|
918 |
+
value: 88.822
|
919 |
+
- type: precision_at_10
|
920 |
+
value: 41.297
|
921 |
+
- type: precision_at_100
|
922 |
+
value: 4.994
|
923 |
+
- type: precision_at_1000
|
924 |
+
value: 0.515
|
925 |
+
- type: precision_at_3
|
926 |
+
value: 73.933
|
927 |
+
- type: precision_at_5
|
928 |
+
value: 61.885
|
929 |
+
- type: recall_at_1
|
930 |
+
value: 27.057
|
931 |
+
- type: recall_at_10
|
932 |
+
value: 82.33200000000001
|
933 |
+
- type: recall_at_100
|
934 |
+
value: 95.065
|
935 |
+
- type: recall_at_1000
|
936 |
+
value: 98.466
|
937 |
+
- type: recall_at_3
|
938 |
+
value: 54.872
|
939 |
+
- type: recall_at_5
|
940 |
+
value: 68.814
|
941 |
+
- task:
|
942 |
+
type: Classification
|
943 |
+
dataset:
|
944 |
+
type: C-MTEB/TNews-classification
|
945 |
+
name: MTEB TNews
|
946 |
+
config: default
|
947 |
+
split: validation
|
948 |
+
revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
|
949 |
+
metrics:
|
950 |
+
- type: accuracy
|
951 |
+
value: 53.690000000000005
|
952 |
+
- type: f1
|
953 |
+
value: 51.87306088948137
|
954 |
+
- task:
|
955 |
+
type: Clustering
|
956 |
+
dataset:
|
957 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
958 |
+
name: MTEB ThuNewsClusteringP2P
|
959 |
+
config: default
|
960 |
+
split: test
|
961 |
+
revision: 5798586b105c0434e4f0fe5e767abe619442cf93
|
962 |
+
metrics:
|
963 |
+
- type: v_measure
|
964 |
+
value: 73.76590442198115
|
965 |
+
- task:
|
966 |
+
type: Clustering
|
967 |
+
dataset:
|
968 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
969 |
+
name: MTEB ThuNewsClusteringS2S
|
970 |
+
config: default
|
971 |
+
split: test
|
972 |
+
revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
|
973 |
+
metrics:
|
974 |
+
- type: v_measure
|
975 |
+
value: 68.61875345658028
|
976 |
+
- task:
|
977 |
+
type: Retrieval
|
978 |
+
dataset:
|
979 |
+
type: C-MTEB/VideoRetrieval
|
980 |
+
name: MTEB VideoRetrieval
|
981 |
+
config: default
|
982 |
+
split: dev
|
983 |
+
revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
|
984 |
+
metrics:
|
985 |
+
- type: map_at_1
|
986 |
+
value: 59.4
|
987 |
+
- type: map_at_10
|
988 |
+
value: 69.19
|
989 |
+
- type: map_at_100
|
990 |
+
value: 69.711
|
991 |
+
- type: map_at_1000
|
992 |
+
value: 69.72699999999999
|
993 |
+
- type: map_at_3
|
994 |
+
value: 67.717
|
995 |
+
- type: map_at_5
|
996 |
+
value: 68.742
|
997 |
+
- type: mrr_at_1
|
998 |
+
value: 59.4
|
999 |
+
- type: mrr_at_10
|
1000 |
+
value: 69.19
|
1001 |
+
- type: mrr_at_100
|
1002 |
+
value: 69.711
|
1003 |
+
- type: mrr_at_1000
|
1004 |
+
value: 69.72699999999999
|
1005 |
+
- type: mrr_at_3
|
1006 |
+
value: 67.717
|
1007 |
+
- type: mrr_at_5
|
1008 |
+
value: 68.742
|
1009 |
+
- type: ndcg_at_1
|
1010 |
+
value: 59.4
|
1011 |
+
- type: ndcg_at_10
|
1012 |
+
value: 73.28099999999999
|
1013 |
+
- type: ndcg_at_100
|
1014 |
+
value: 75.575
|
1015 |
+
- type: ndcg_at_1000
|
1016 |
+
value: 75.971
|
1017 |
+
- type: ndcg_at_3
|
1018 |
+
value: 70.339
|
1019 |
+
- type: ndcg_at_5
|
1020 |
+
value: 72.16799999999999
|
1021 |
+
- type: precision_at_1
|
1022 |
+
value: 59.4
|
1023 |
+
- type: precision_at_10
|
1024 |
+
value: 8.58
|
1025 |
+
- type: precision_at_100
|
1026 |
+
value: 0.96
|
1027 |
+
- type: precision_at_1000
|
1028 |
+
value: 0.099
|
1029 |
+
- type: precision_at_3
|
1030 |
+
value: 25.967000000000002
|
1031 |
+
- type: precision_at_5
|
1032 |
+
value: 16.46
|
1033 |
+
- type: recall_at_1
|
1034 |
+
value: 59.4
|
1035 |
+
- type: recall_at_10
|
1036 |
+
value: 85.8
|
1037 |
+
- type: recall_at_100
|
1038 |
+
value: 96.0
|
1039 |
+
- type: recall_at_1000
|
1040 |
+
value: 99.1
|
1041 |
+
- type: recall_at_3
|
1042 |
+
value: 77.9
|
1043 |
+
- type: recall_at_5
|
1044 |
+
value: 82.3
|
1045 |
+
- task:
|
1046 |
+
type: Classification
|
1047 |
+
dataset:
|
1048 |
+
type: C-MTEB/waimai-classification
|
1049 |
+
name: MTEB Waimai
|
1050 |
+
config: default
|
1051 |
+
split: test
|
1052 |
+
revision: 339287def212450dcaa9df8c22bf93e9980c7023
|
1053 |
+
metrics:
|
1054 |
+
- type: accuracy
|
1055 |
+
value: 88.56000000000002
|
1056 |
+
- type: ap
|
1057 |
+
value: 73.62152033132061
|
1058 |
+
- type: f1
|
1059 |
+
value: 87.0916916405758
|
1060 |
---
|
1061 |
+
## acge model
|
1062 |
+
|
1063 |
+
acge是一个通用的文本编码模型,是一个可变长度的向量化模型,使用了[Matryoshka Representation Learning](https://arxiv.org/abs/2205.13147),如图所示:
|
1064 |
+
|
1065 |
+
![matryoshka-small](./img/matryoshka-small.gif)
|
1066 |
+
|
1067 |
+
建议使用的维度为1024或者1792
|
1068 |
+
|
1069 |
+
|
1070 |
+
| Model Name | Model Size (GB) | Dimension | Sequence Length | Language | Need instruction for retrieval? |
|
1071 |
+
|:------------------:|:---------------:|:---------:|:---------------:|:--------:|:-------------------------------:|
|
1072 |
+
| acge-text-embedding | 0.65 | [1024, 1792] | 1024 | Chinese | NO |
|
1073 |
+
|
1074 |
+
|
1075 |
+
## Metric
|
1076 |
+
|
1077 |
+
#### C-MTEB leaderboard (Chinese)
|
1078 |
+
|
1079 |
+
测试的时候因为数据的随机性、显卡、推理的数据类型导致每次推理的结果不一致,我总共测试了4次,不同的显卡(A10 A100),不同的数据类型,测试结果放在了result文件夹中,选取了一个精度最低的测试作为最终的精度测试。
|
1080 |
+
|
1081 |
+
| Model Name | GPU | tensor-type | Model Size (GB) | Dimension | Sequence Length | Average (35) | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) |
|
1082 |
+
|:------------------:|:---------------:|:---------:|:---------------:|:------------:|:------------------:|:--------------:|:-----------------------:|:-------------:|:-------------:|:-------:|:-------:|:-------:|
|
1083 |
+
| acge_text_embedding | NVIDIA TESLA A10 | bfloat16 | 0.65 | 1792 | 1024 | 68.91 | 72.76 | 58.22 | 87.82 | 67.67 | 72.48 | 62.24 |
|
1084 |
+
| acge_text_embedding | NVIDIA TESLA A100 | bfloat16 | 0.65 | 1792 | 1024 | 68.91 | 72.77 | 58.35 | 87.82 | 67.53 | 72.48 | 62.24 |
|
1085 |
+
| acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 1024 | 68.99 | 72.76 | 58.68 | 87.84 | 67.89 | 72.49 | 62.24 |
|
1086 |
+
| acge_text_embedding | NVIDIA TESLA A100 | float32 | 0.65 | 1792 | 1024 | 68.98 | 72.76 | 58.58 | 87.83 | 67.91 | 72.49 | 62.24 |
|
1087 |
+
|
1088 |
+
#### Reproduce our results
|
1089 |
+
|
1090 |
+
**C-MTEB:**
|
1091 |
+
|
1092 |
+
```python
|
1093 |
+
import torch
|
1094 |
+
import argparse
|
1095 |
+
import functools
|
1096 |
+
from C_MTEB.tasks import *
|
1097 |
+
from typing import List, Dict
|
1098 |
+
from sentence_transformers import SentenceTransformer
|
1099 |
+
from mteb import MTEB, DRESModel
|
1100 |
+
|
1101 |
+
|
1102 |
+
class RetrievalModel(DRESModel):
|
1103 |
+
def __init__(self, encoder, **kwargs):
|
1104 |
+
self.encoder = encoder
|
1105 |
+
|
1106 |
+
def encode_queries(self, queries: List[str], **kwargs) -> np.ndarray:
|
1107 |
+
input_texts = ['{}'.format(q) for q in queries]
|
1108 |
+
return self._do_encode(input_texts)
|
1109 |
+
|
1110 |
+
def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs) -> np.ndarray:
|
1111 |
+
input_texts = ['{} {}'.format(doc.get('title', ''), doc['text']).strip() for doc in corpus]
|
1112 |
+
input_texts = ['{}'.format(t) for t in input_texts]
|
1113 |
+
return self._do_encode(input_texts)
|
1114 |
+
|
1115 |
+
@torch.no_grad()
|
1116 |
+
def _do_encode(self, input_texts: List[str]) -> np.ndarray:
|
1117 |
+
return self.encoder.encode(
|
1118 |
+
sentences=input_texts,
|
1119 |
+
batch_size=512,
|
1120 |
+
normalize_embeddings=True,
|
1121 |
+
convert_to_numpy=True
|
1122 |
+
)
|
1123 |
+
|
1124 |
+
|
1125 |
+
def get_args():
|
1126 |
+
parser = argparse.ArgumentParser()
|
1127 |
+
parser.add_argument('--model_name_or_path', default="acge_text_embedding", type=str)
|
1128 |
+
parser.add_argument('--task_type', default=None, type=str)
|
1129 |
+
parser.add_argument('--pooling_method', default='cls', type=str)
|
1130 |
+
parser.add_argument('--output_dir', default='zh_results',
|
1131 |
+
type=str, help='output directory')
|
1132 |
+
parser.add_argument('--max_len', default=1024, type=int, help='max length')
|
1133 |
+
return parser.parse_args()
|
1134 |
+
|
1135 |
+
|
1136 |
+
if __name__ == '__main__':
|
1137 |
+
args = get_args()
|
1138 |
+
encoder = SentenceTransformer(args.model_name_or_path).half()
|
1139 |
+
encoder.encode = functools.partial(encoder.encode, normalize_embeddings=True)
|
1140 |
+
encoder.max_seq_length = int(args.max_len)
|
1141 |
+
|
1142 |
+
task_names = [t.description["name"] for t in MTEB(task_types=args.task_type,
|
1143 |
+
task_langs=['zh', 'zh-CN']).tasks]
|
1144 |
+
TASKS_WITH_PROMPTS = ["T2Retrieval", "MMarcoRetrieval", "DuRetrieval", "CovidRetrieval", "CmedqaRetrieval",
|
1145 |
+
"EcomRetrieval", "MedicalRetrieval", "VideoRetrieval"]
|
1146 |
+
for task in task_names:
|
1147 |
+
evaluation = MTEB(tasks=[task], task_langs=['zh', 'zh-CN'])
|
1148 |
+
if task in TASKS_WITH_PROMPTS:
|
1149 |
+
evaluation.run(RetrievalModel(encoder), output_folder=args.output_dir, overwrite_results=False)
|
1150 |
+
else:
|
1151 |
+
evaluation.run(encoder, output_folder=args.output_dir, overwrite_results=False)
|
1152 |
+
|
1153 |
+
|
1154 |
+
```
|
1155 |
+
|
1156 |
+
|
1157 |
+
## Usage
|
1158 |
+
|
1159 |
+
#### acge 中文系列模型
|
1160 |
+
|
1161 |
+
在sentence-transformer库中的使用方法:
|
1162 |
+
|
1163 |
+
```python
|
1164 |
+
from sentence_transformers import SentenceTransformer
|
1165 |
+
|
1166 |
+
sentences = ["数据1", "数据2"]
|
1167 |
+
model = SentenceTransformer('acge_text_embedding')
|
1168 |
+
print(model.max_seq_length)
|
1169 |
+
embeddings_1 = model.encode(sentences, normalize_embeddings=True)
|
1170 |
+
embeddings_2 = model.encode(sentences, normalize_embeddings=True)
|
1171 |
+
similarity = embeddings_1 @ embeddings_2.T
|
1172 |
+
print(similarity)
|
1173 |
+
```
|
1174 |
+
在sentence-transformer库中的使用方法,选取不同的维度:
|
1175 |
+
|
1176 |
+
```python
|
1177 |
+
import torch
|
1178 |
+
from sentence_transformers import SentenceTransformer
|
1179 |
+
|
1180 |
+
sentences = ["数据1", "数据2"]
|
1181 |
+
model = SentenceTransformer('acge_text_embedding')
|
1182 |
+
embeddings = model.encode(sentences, normalize_embeddings=False)
|
1183 |
+
matryoshka_dim = 1024
|
1184 |
+
embeddings = embeddings[..., :matryoshka_dim] # Shrink the embedding dimensions
|
1185 |
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
1186 |
+
print(embeddings.shape)
|
1187 |
+
# => (2, 1024)
|
1188 |
+
|
1189 |
+
```
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"directionality": "bidi",
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 4096,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 1024,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 16,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"pooler_fc_size": 768,
|
21 |
+
"pooler_num_attention_heads": 12,
|
22 |
+
"pooler_num_fc_layers": 3,
|
23 |
+
"pooler_size_per_head": 128,
|
24 |
+
"pooler_type": "first_token_transform",
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "bfloat16",
|
27 |
+
"transformers_version": "4.28.0",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 21128
|
31 |
+
}
|
img/matryoshka-small.gif
ADDED
Git LFS Details
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
}
|
20 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6791d0a1cee50f2d5d3f5a1092ef7e72750ad64bf48830d9deb017e8584c2941
|
3 |
+
size 652228333
|
result/acge_text_embedding_a10_bf16/AFQMC.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "AFQMC",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"validation": {
|
6 |
+
"cos_sim": {
|
7 |
+
"pearson": 0.5403313115451808,
|
8 |
+
"spearman": 0.5880630275663453
|
9 |
+
},
|
10 |
+
"euclidean": {
|
11 |
+
"pearson": 0.5746843921090328,
|
12 |
+
"spearman": 0.5880155813915751
|
13 |
+
},
|
14 |
+
"evaluation_time": 2.86,
|
15 |
+
"manhattan": {
|
16 |
+
"pearson": 0.5745948298354011,
|
17 |
+
"spearman": 0.5879717540772654
|
18 |
+
}
|
19 |
+
}
|
20 |
+
}
|
result/acge_text_embedding_a10_bf16/ATEC.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "ATEC",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"test": {
|
6 |
+
"cos_sim": {
|
7 |
+
"pearson": 0.5352343534213784,
|
8 |
+
"spearman": 0.5794595170176331
|
9 |
+
},
|
10 |
+
"euclidean": {
|
11 |
+
"pearson": 0.6116662835482146,
|
12 |
+
"spearman": 0.5794590216330153
|
13 |
+
},
|
14 |
+
"evaluation_time": 15.75,
|
15 |
+
"manhattan": {
|
16 |
+
"pearson": 0.6116423136556863,
|
17 |
+
"spearman": 0.5794474364498415
|
18 |
+
}
|
19 |
+
}
|
20 |
+
}
|
result/acge_text_embedding_a10_bf16/AmazonReviewsClassification.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": "1399c76144fd37290681b995c656ef9b2e06e26d",
|
3 |
+
"mteb_dataset_name": "AmazonReviewsClassification",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 16.78,
|
7 |
+
"zh": {
|
8 |
+
"accuracy": 0.48536,
|
9 |
+
"accuracy_stderr": 0.016551688735594317,
|
10 |
+
"f1": 0.4659652987641795,
|
11 |
+
"f1_stderr": 0.016438251092234995,
|
12 |
+
"main_score": 0.48536
|
13 |
+
}
|
14 |
+
},
|
15 |
+
"validation": {
|
16 |
+
"evaluation_time": 22.66,
|
17 |
+
"zh": {
|
18 |
+
"accuracy": 0.4768,
|
19 |
+
"accuracy_stderr": 0.01374394412095741,
|
20 |
+
"f1": 0.4575978790615031,
|
21 |
+
"f1_stderr": 0.011966200426813917,
|
22 |
+
"main_score": 0.4768
|
23 |
+
}
|
24 |
+
}
|
25 |
+
}
|
result/acge_text_embedding_a10_bf16/BQ.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "BQ",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"test": {
|
6 |
+
"cos_sim": {
|
7 |
+
"pearson": 0.6827376047375847,
|
8 |
+
"spearman": 0.7037250413109453
|
9 |
+
},
|
10 |
+
"euclidean": {
|
11 |
+
"pearson": 0.6942852768280962,
|
12 |
+
"spearman": 0.7037187366396407
|
13 |
+
},
|
14 |
+
"evaluation_time": 7.01,
|
15 |
+
"manhattan": {
|
16 |
+
"pearson": 0.694038790612488,
|
17 |
+
"spearman": 0.7034866071976907
|
18 |
+
}
|
19 |
+
}
|
20 |
+
}
|
result/acge_text_embedding_a10_bf16/CLSClusteringP2P.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "CLSClusteringP2P",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 408.54,
|
7 |
+
"v_measure": 0.46838444815258395,
|
8 |
+
"v_measure_std": 0.009198056440364623
|
9 |
+
}
|
10 |
+
}
|
result/acge_text_embedding_a10_bf16/CLSClusteringS2S.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "CLSClusteringS2S",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 55.48,
|
7 |
+
"v_measure": 0.44259095471511933,
|
8 |
+
"v_measure_std": 0.013162258362441878
|
9 |
+
}
|
10 |
+
}
|
result/acge_text_embedding_a10_bf16/CMedQAv1.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "CMedQAv1",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 177.38,
|
7 |
+
"map": 0.8850276515595047,
|
8 |
+
"mrr": 0.9091761904761906
|
9 |
+
}
|
10 |
+
}
|
result/acge_text_embedding_a10_bf16/CMedQAv2.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "CMedQAv2",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 166.23,
|
7 |
+
"map": 0.887392598559833,
|
8 |
+
"mrr": 0.9120765873015874
|
9 |
+
}
|
10 |
+
}
|
result/acge_text_embedding_a10_bf16/CmedqaRetrieval.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "CmedqaRetrieval",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"validation": {
|
6 |
+
"evaluation_time": 642.4,
|
7 |
+
"map_at_1": 0.26912,
|
8 |
+
"map_at_10": 0.4002,
|
9 |
+
"map_at_100": 0.41919,
|
10 |
+
"map_at_1000": 0.42021,
|
11 |
+
"map_at_3": 0.35429,
|
12 |
+
"map_at_5": 0.38055,
|
13 |
+
"mrr_at_1": 0.40685,
|
14 |
+
"mrr_at_10": 0.48849,
|
15 |
+
"mrr_at_100": 0.4983,
|
16 |
+
"mrr_at_1000": 0.4987,
|
17 |
+
"mrr_at_3": 0.46166,
|
18 |
+
"mrr_at_5": 0.47737,
|
19 |
+
"ndcg_at_1": 0.40685,
|
20 |
+
"ndcg_at_10": 0.46798,
|
21 |
+
"ndcg_at_100": 0.53998,
|
22 |
+
"ndcg_at_1000": 0.557,
|
23 |
+
"ndcg_at_3": 0.41035,
|
24 |
+
"ndcg_at_5": 0.4361,
|
25 |
+
"precision_at_1": 0.40685,
|
26 |
+
"precision_at_10": 0.1043,
|
27 |
+
"precision_at_100": 0.01625,
|
28 |
+
"precision_at_1000": 0.00184,
|
29 |
+
"precision_at_3": 0.23139,
|
30 |
+
"precision_at_5": 0.17024,
|
31 |
+
"recall_at_1": 0.26912,
|
32 |
+
"recall_at_10": 0.5789,
|
33 |
+
"recall_at_100": 0.87374,
|
34 |
+
"recall_at_1000": 0.98721,
|
35 |
+
"recall_at_3": 0.40825,
|
36 |
+
"recall_at_5": 0.48491
|
37 |
+
}
|
38 |
+
}
|
result/acge_text_embedding_a10_bf16/Cmnli.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "Cmnli",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"validation": {
|
6 |
+
"cos_sim": {
|
7 |
+
"accuracy": 0.834155141310884,
|
8 |
+
"accuracy_threshold": 0.655905544757843,
|
9 |
+
"ap": 0.9049057754163061,
|
10 |
+
"f1": 0.8427460263780859,
|
11 |
+
"f1_threshold": 0.645372748374939,
|
12 |
+
"precision": 0.8136700043535046,
|
13 |
+
"recall": 0.8739770867430442
|
14 |
+
},
|
15 |
+
"dot": {
|
16 |
+
"accuracy": 0.8342754058929646,
|
17 |
+
"accuracy_threshold": 0.6557313203811646,
|
18 |
+
"ap": 0.9050212054081632,
|
19 |
+
"f1": 0.8431416424255985,
|
20 |
+
"f1_threshold": 0.6397272348403931,
|
21 |
+
"precision": 0.8084102124007724,
|
22 |
+
"recall": 0.8809913490764555
|
23 |
+
},
|
24 |
+
"euclidean": {
|
25 |
+
"accuracy": 0.8345159350571256,
|
26 |
+
"accuracy_threshold": 0.8281130194664001,
|
27 |
+
"ap": 0.9048986952292054,
|
28 |
+
"f1": 0.8430311231393776,
|
29 |
+
"f1_threshold": 0.8416151404380798,
|
30 |
+
"precision": 0.8142016989762579,
|
31 |
+
"recall": 0.8739770867430442
|
32 |
+
},
|
33 |
+
"evaluation_time": 6.59,
|
34 |
+
"manhattan": {
|
35 |
+
"accuracy": 0.8353577871316897,
|
36 |
+
"accuracy_threshold": 28.042278289794922,
|
37 |
+
"ap": 0.9048090090749703,
|
38 |
+
"f1": 0.8442074208555542,
|
39 |
+
"f1_threshold": 28.250762939453125,
|
40 |
+
"precision": 0.8201058201058201,
|
41 |
+
"recall": 0.8697685293429974
|
42 |
+
},
|
43 |
+
"max": {
|
44 |
+
"accuracy": 0.8353577871316897,
|
45 |
+
"ap": 0.9050212054081632,
|
46 |
+
"f1": 0.8442074208555542
|
47 |
+
}
|
48 |
+
}
|
49 |
+
}
|
result/acge_text_embedding_a10_bf16/CovidRetrieval.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "CovidRetrieval",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"validation": {
|
6 |
+
"evaluation_time": 675.01,
|
7 |
+
"map_at_1": 0.67597,
|
8 |
+
"map_at_10": 0.76531,
|
9 |
+
"map_at_100": 0.7688,
|
10 |
+
"map_at_1000": 0.76884,
|
11 |
+
"map_at_3": 0.74772,
|
12 |
+
"map_at_5": 0.75881,
|
13 |
+
"mrr_at_1": 0.67861,
|
14 |
+
"mrr_at_10": 0.7654,
|
15 |
+
"mrr_at_100": 0.76888,
|
16 |
+
"mrr_at_1000": 0.76893,
|
17 |
+
"mrr_at_3": 0.74886,
|
18 |
+
"mrr_at_5": 0.75929,
|
19 |
+
"ndcg_at_1": 0.67861,
|
20 |
+
"ndcg_at_10": 0.80405,
|
21 |
+
"ndcg_at_100": 0.81918,
|
22 |
+
"ndcg_at_1000": 0.82027,
|
23 |
+
"ndcg_at_3": 0.76972,
|
24 |
+
"ndcg_at_5": 0.78929,
|
25 |
+
"precision_at_1": 0.67861,
|
26 |
+
"precision_at_10": 0.09336,
|
27 |
+
"precision_at_100": 0.01001,
|
28 |
+
"precision_at_1000": 0.00101,
|
29 |
+
"precision_at_3": 0.27924,
|
30 |
+
"precision_at_5": 0.17745,
|
31 |
+
"recall_at_1": 0.67597,
|
32 |
+
"recall_at_10": 0.92308,
|
33 |
+
"recall_at_100": 0.99052,
|
34 |
+
"recall_at_1000": 0.99895,
|
35 |
+
"recall_at_3": 0.83219,
|
36 |
+
"recall_at_5": 0.87908
|
37 |
+
}
|
38 |
+
}
|
result/acge_text_embedding_a10_bf16/DuRetrieval.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "DuRetrieval",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"validation": {
|
6 |
+
"evaluation_time": 669.37,
|
7 |
+
"map_at_1": 0.25574,
|
8 |
+
"map_at_10": 0.7849,
|
9 |
+
"map_at_100": 0.81378,
|
10 |
+
"map_at_1000": 0.81423,
|
11 |
+
"map_at_3": 0.54115,
|
12 |
+
"map_at_5": 0.68734,
|
13 |
+
"mrr_at_1": 0.892,
|
14 |
+
"mrr_at_10": 0.92573,
|
15 |
+
"mrr_at_100": 0.92649,
|
16 |
+
"mrr_at_1000": 0.92653,
|
17 |
+
"mrr_at_3": 0.92275,
|
18 |
+
"mrr_at_5": 0.92465,
|
19 |
+
"ndcg_at_1": 0.892,
|
20 |
+
"ndcg_at_10": 0.86086,
|
21 |
+
"ndcg_at_100": 0.89052,
|
22 |
+
"ndcg_at_1000": 0.89483,
|
23 |
+
"ndcg_at_3": 0.84913,
|
24 |
+
"ndcg_at_5": 0.8406,
|
25 |
+
"precision_at_1": 0.892,
|
26 |
+
"precision_at_10": 0.4135,
|
27 |
+
"precision_at_100": 0.04779,
|
28 |
+
"precision_at_1000": 0.00488,
|
29 |
+
"precision_at_3": 0.76183,
|
30 |
+
"precision_at_5": 0.6468,
|
31 |
+
"recall_at_1": 0.25574,
|
32 |
+
"recall_at_10": 0.87154,
|
33 |
+
"recall_at_100": 0.96829,
|
34 |
+
"recall_at_1000": 0.9912,
|
35 |
+
"recall_at_3": 0.56446,
|
36 |
+
"recall_at_5": 0.73658
|
37 |
+
}
|
38 |
+
}
|
result/acge_text_embedding_a10_bf16/EcomRetrieval.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "EcomRetrieval",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"validation": {
|
6 |
+
"evaluation_time": 65.33,
|
7 |
+
"map_at_1": 0.521,
|
8 |
+
"map_at_10": 0.62619,
|
9 |
+
"map_at_100": 0.63114,
|
10 |
+
"map_at_1000": 0.63131,
|
11 |
+
"map_at_3": 0.60267,
|
12 |
+
"map_at_5": 0.61792,
|
13 |
+
"mrr_at_1": 0.521,
|
14 |
+
"mrr_at_10": 0.62619,
|
15 |
+
"mrr_at_100": 0.63114,
|
16 |
+
"mrr_at_1000": 0.63131,
|
17 |
+
"mrr_at_3": 0.60267,
|
18 |
+
"mrr_at_5": 0.61792,
|
19 |
+
"ndcg_at_1": 0.521,
|
20 |
+
"ndcg_at_10": 0.67566,
|
21 |
+
"ndcg_at_100": 0.69947,
|
22 |
+
"ndcg_at_1000": 0.70333,
|
23 |
+
"ndcg_at_3": 0.62826,
|
24 |
+
"ndcg_at_5": 0.6558,
|
25 |
+
"precision_at_1": 0.521,
|
26 |
+
"precision_at_10": 0.083,
|
27 |
+
"precision_at_100": 0.00941,
|
28 |
+
"precision_at_1000": 0.00097,
|
29 |
+
"precision_at_3": 0.234,
|
30 |
+
"precision_at_5": 0.1538,
|
31 |
+
"recall_at_1": 0.521,
|
32 |
+
"recall_at_10": 0.83,
|
33 |
+
"recall_at_100": 0.941,
|
34 |
+
"recall_at_1000": 0.97,
|
35 |
+
"recall_at_3": 0.702,
|
36 |
+
"recall_at_5": 0.769
|
37 |
+
}
|
38 |
+
}
|
result/acge_text_embedding_a10_bf16/IFlyTek.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "IFlyTek",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"validation": {
|
6 |
+
"accuracy": 0.5176606387071951,
|
7 |
+
"accuracy_stderr": 0.0035230544493296385,
|
8 |
+
"evaluation_time": 149.96,
|
9 |
+
"f1": 0.40270170518699155,
|
10 |
+
"f1_stderr": 0.0017349315887891484,
|
11 |
+
"main_score": 0.5176606387071951
|
12 |
+
}
|
13 |
+
}
|
result/acge_text_embedding_a10_bf16/JDReview.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "JDReview",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"test": {
|
6 |
+
"accuracy": 0.8669793621013133,
|
7 |
+
"accuracy_stderr": 0.009170243459549659,
|
8 |
+
"ap": 0.5546718958939327,
|
9 |
+
"ap_stderr": 0.013907979413741858,
|
10 |
+
"evaluation_time": 9.64,
|
11 |
+
"f1": 0.8148228915952436,
|
12 |
+
"f1_stderr": 0.008989126268531128,
|
13 |
+
"main_score": 0.8669793621013133
|
14 |
+
}
|
15 |
+
}
|
result/acge_text_embedding_a10_bf16/LCQMC.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "LCQMC",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"test": {
|
6 |
+
"cos_sim": {
|
7 |
+
"pearson": 0.7113799238905196,
|
8 |
+
"spearman": 0.7817304786177175
|
9 |
+
},
|
10 |
+
"euclidean": {
|
11 |
+
"pearson": 0.7748642718370318,
|
12 |
+
"spearman": 0.7817554866337617
|
13 |
+
},
|
14 |
+
"evaluation_time": 7.69,
|
15 |
+
"manhattan": {
|
16 |
+
"pearson": 0.7747501828376532,
|
17 |
+
"spearman": 0.7816650098418465
|
18 |
+
}
|
19 |
+
}
|
20 |
+
}
|
result/acge_text_embedding_a10_bf16/MMarcoReranking.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "MMarcoReranking",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"validation": {
|
6 |
+
"evaluation_time": 204.7,
|
7 |
+
"map": 0.2758238117043332,
|
8 |
+
"mrr": 0.27842460317460316
|
9 |
+
}
|
10 |
+
}
|
result/acge_text_embedding_a10_bf16/MMarcoRetrieval.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "MMarcoRetrieval",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"validation": {
|
6 |
+
"evaluation_time": 241.64,
|
7 |
+
"map_at_1": 0.65654,
|
8 |
+
"map_at_10": 0.74765,
|
9 |
+
"map_at_100": 0.75108,
|
10 |
+
"map_at_1000": 0.7512,
|
11 |
+
"map_at_3": 0.73022,
|
12 |
+
"map_at_5": 0.74134,
|
13 |
+
"mrr_at_1": 0.67923,
|
14 |
+
"mrr_at_10": 0.75395,
|
15 |
+
"mrr_at_100": 0.75694,
|
16 |
+
"mrr_at_1000": 0.75705,
|
17 |
+
"mrr_at_3": 0.73885,
|
18 |
+
"mrr_at_5": 0.74845,
|
19 |
+
"ndcg_at_1": 0.67923,
|
20 |
+
"ndcg_at_10": 0.78425,
|
21 |
+
"ndcg_at_100": 0.79966,
|
22 |
+
"ndcg_at_1000": 0.80278,
|
23 |
+
"ndcg_at_3": 0.75128,
|
24 |
+
"ndcg_at_5": 0.76999,
|
25 |
+
"precision_at_1": 0.67923,
|
26 |
+
"precision_at_10": 0.09468,
|
27 |
+
"precision_at_100": 0.01023,
|
28 |
+
"precision_at_1000": 0.00105,
|
29 |
+
"precision_at_3": 0.28329,
|
30 |
+
"precision_at_5": 0.1798,
|
31 |
+
"recall_at_1": 0.65654,
|
32 |
+
"recall_at_10": 0.89056,
|
33 |
+
"recall_at_100": 0.96037,
|
34 |
+
"recall_at_1000": 0.98455,
|
35 |
+
"recall_at_3": 0.80343,
|
36 |
+
"recall_at_5": 0.84789
|
37 |
+
}
|
38 |
+
}
|
result/acge_text_embedding_a10_bf16/MassiveIntentClassification.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7",
|
3 |
+
"mteb_dataset_name": "MassiveIntentClassification",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 12.49,
|
7 |
+
"zh-CN": {
|
8 |
+
"accuracy": 0.7585743106926698,
|
9 |
+
"accuracy_stderr": 0.015209391900334438,
|
10 |
+
"f1": 0.7303701614932926,
|
11 |
+
"f1_stderr": 0.012723690389832107,
|
12 |
+
"main_score": 0.7585743106926698
|
13 |
+
}
|
14 |
+
},
|
15 |
+
"validation": {
|
16 |
+
"evaluation_time": 12.27,
|
17 |
+
"zh-CN": {
|
18 |
+
"accuracy": 0.7619773733398917,
|
19 |
+
"accuracy_stderr": 0.014512576249971336,
|
20 |
+
"f1": 0.7244896179461546,
|
21 |
+
"f1_stderr": 0.011384890091815123,
|
22 |
+
"main_score": 0.7619773733398917
|
23 |
+
}
|
24 |
+
}
|
25 |
+
}
|
result/acge_text_embedding_a10_bf16/MassiveScenarioClassification.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": "7d571f92784cd94a019292a1f45445077d0ef634",
|
3 |
+
"mteb_dataset_name": "MassiveScenarioClassification",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 8.85,
|
7 |
+
"zh-CN": {
|
8 |
+
"accuracy": 0.7842299932750505,
|
9 |
+
"accuracy_stderr": 0.014823175563716382,
|
10 |
+
"f1": 0.7810417897185625,
|
11 |
+
"f1_stderr": 0.013286373780853102,
|
12 |
+
"main_score": 0.7842299932750505
|
13 |
+
}
|
14 |
+
},
|
15 |
+
"validation": {
|
16 |
+
"evaluation_time": 8.38,
|
17 |
+
"zh-CN": {
|
18 |
+
"accuracy": 0.7782095425479587,
|
19 |
+
"accuracy_stderr": 0.014618885958749248,
|
20 |
+
"f1": 0.7723375008626536,
|
21 |
+
"f1_stderr": 0.015591423260094068,
|
22 |
+
"main_score": 0.7782095425479587
|
23 |
+
}
|
24 |
+
}
|
25 |
+
}
|
result/acge_text_embedding_a10_bf16/MedicalRetrieval.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "MedicalRetrieval",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"validation": {
|
6 |
+
"evaluation_time": 236.29,
|
7 |
+
"map_at_1": 0.549,
|
8 |
+
"map_at_10": 0.61024,
|
9 |
+
"map_at_100": 0.61585,
|
10 |
+
"map_at_1000": 0.61625,
|
11 |
+
"map_at_3": 0.59533,
|
12 |
+
"map_at_5": 0.60333,
|
13 |
+
"mrr_at_1": 0.551,
|
14 |
+
"mrr_at_10": 0.61124,
|
15 |
+
"mrr_at_100": 0.61686,
|
16 |
+
"mrr_at_1000": 0.61726,
|
17 |
+
"mrr_at_3": 0.59633,
|
18 |
+
"mrr_at_5": 0.60433,
|
19 |
+
"ndcg_at_1": 0.549,
|
20 |
+
"ndcg_at_10": 0.6407,
|
21 |
+
"ndcg_at_100": 0.67041,
|
22 |
+
"ndcg_at_1000": 0.68237,
|
23 |
+
"ndcg_at_3": 0.60969,
|
24 |
+
"ndcg_at_5": 0.62411,
|
25 |
+
"precision_at_1": 0.549,
|
26 |
+
"precision_at_10": 0.0737,
|
27 |
+
"precision_at_100": 0.00882,
|
28 |
+
"precision_at_1000": 0.00098,
|
29 |
+
"precision_at_3": 0.217,
|
30 |
+
"precision_at_5": 0.1372,
|
31 |
+
"recall_at_1": 0.549,
|
32 |
+
"recall_at_10": 0.737,
|
33 |
+
"recall_at_100": 0.882,
|
34 |
+
"recall_at_1000": 0.978,
|
35 |
+
"recall_at_3": 0.651,
|
36 |
+
"recall_at_5": 0.686
|
37 |
+
}
|
38 |
+
}
|
result/acge_text_embedding_a10_bf16/MultilingualSentiment.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "MultilingualSentiment",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"validation": {
|
6 |
+
"accuracy": 0.7757666666666666,
|
7 |
+
"accuracy_stderr": 0.004494564618637846,
|
8 |
+
"evaluation_time": 19.48,
|
9 |
+
"f1": 0.7754926687781014,
|
10 |
+
"f1_stderr": 0.006051542426096796,
|
11 |
+
"main_score": 0.7757666666666666
|
12 |
+
}
|
13 |
+
}
|
result/acge_text_embedding_a10_bf16/Ocnli.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "Ocnli",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"validation": {
|
6 |
+
"cos_sim": {
|
7 |
+
"accuracy": 0.8110449377368706,
|
8 |
+
"accuracy_threshold": 0.5930440425872803,
|
9 |
+
"ap": 0.8516262845422288,
|
10 |
+
"f1": 0.8297771455666192,
|
11 |
+
"f1_threshold": 0.5647917985916138,
|
12 |
+
"precision": 0.7530120481927711,
|
13 |
+
"recall": 0.9239704329461457
|
14 |
+
},
|
15 |
+
"dot": {
|
16 |
+
"accuracy": 0.8110449377368706,
|
17 |
+
"accuracy_threshold": 0.5982565879821777,
|
18 |
+
"ap": 0.8511448381714821,
|
19 |
+
"f1": 0.8299190090519295,
|
20 |
+
"f1_threshold": 0.5676579475402832,
|
21 |
+
"precision": 0.7560763888888888,
|
22 |
+
"recall": 0.9197465681098205
|
23 |
+
},
|
24 |
+
"euclidean": {
|
25 |
+
"accuracy": 0.8105035192203573,
|
26 |
+
"accuracy_threshold": 0.8990259170532227,
|
27 |
+
"ap": 0.8516821622996872,
|
28 |
+
"f1": 0.8300094966761632,
|
29 |
+
"f1_threshold": 0.9317486882209778,
|
30 |
+
"precision": 0.7540983606557377,
|
31 |
+
"recall": 0.9229144667370645
|
32 |
+
},
|
33 |
+
"evaluation_time": 1.5,
|
34 |
+
"manhattan": {
|
35 |
+
"accuracy": 0.8115863562533838,
|
36 |
+
"accuracy_threshold": 30.2585506439209,
|
37 |
+
"ap": 0.8514921863839019,
|
38 |
+
"f1": 0.8291048348492102,
|
39 |
+
"f1_threshold": 31.238189697265625,
|
40 |
+
"precision": 0.7583187390542907,
|
41 |
+
"recall": 0.914466737064414
|
42 |
+
},
|
43 |
+
"max": {
|
44 |
+
"accuracy": 0.8115863562533838,
|
45 |
+
"ap": 0.8516821622996872,
|
46 |
+
"f1": 0.8300094966761632
|
47 |
+
}
|
48 |
+
}
|
49 |
+
}
|
result/acge_text_embedding_a10_bf16/OnlineShopping.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "OnlineShopping",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"test": {
|
6 |
+
"accuracy": 0.9374,
|
7 |
+
"accuracy_stderr": 0.005499090833946969,
|
8 |
+
"ap": 0.918742935725318,
|
9 |
+
"ap_stderr": 0.0038520346274983235,
|
10 |
+
"evaluation_time": 13.75,
|
11 |
+
"f1": 0.937291967799952,
|
12 |
+
"f1_stderr": 0.005456903309479222,
|
13 |
+
"main_score": 0.9374
|
14 |
+
}
|
15 |
+
}
|
result/acge_text_embedding_a10_bf16/PAWSX.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "PAWSX",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"test": {
|
6 |
+
"cos_sim": {
|
7 |
+
"pearson": 0.39153309719954255,
|
8 |
+
"spearman": 0.4549104095046596
|
9 |
+
},
|
10 |
+
"euclidean": {
|
11 |
+
"pearson": 0.4484341925744787,
|
12 |
+
"spearman": 0.4549591820681975
|
13 |
+
},
|
14 |
+
"evaluation_time": 3.2,
|
15 |
+
"manhattan": {
|
16 |
+
"pearson": 0.44849970344307794,
|
17 |
+
"spearman": 0.45511943477696504
|
18 |
+
}
|
19 |
+
}
|
20 |
+
}
|
result/acge_text_embedding_a10_bf16/QBQTC.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "QBQTC",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"test": {
|
6 |
+
"cos_sim": {
|
7 |
+
"pearson": 0.34238065972733855,
|
8 |
+
"spearman": 0.3729994521083957
|
9 |
+
},
|
10 |
+
"euclidean": {
|
11 |
+
"pearson": 0.35117285683586885,
|
12 |
+
"spearman": 0.37296421136185903
|
13 |
+
},
|
14 |
+
"evaluation_time": 4.28,
|
15 |
+
"manhattan": {
|
16 |
+
"pearson": 0.35077612993620544,
|
17 |
+
"spearman": 0.3724321404636873
|
18 |
+
}
|
19 |
+
}
|
20 |
+
}
|
result/acge_text_embedding_a10_bf16/STS22.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80",
|
3 |
+
"mteb_dataset_name": "STS22",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 19.94,
|
7 |
+
"zh": {
|
8 |
+
"cos_sim": {
|
9 |
+
"pearson": 0.6181084429804533,
|
10 |
+
"spearman": 0.6706680826468155
|
11 |
+
},
|
12 |
+
"euclidean": {
|
13 |
+
"pearson": 0.6568769357174774,
|
14 |
+
"spearman": 0.6703679315323132
|
15 |
+
},
|
16 |
+
"manhattan": {
|
17 |
+
"pearson": 0.6562894558510642,
|
18 |
+
"spearman": 0.6703727613483745
|
19 |
+
}
|
20 |
+
}
|
21 |
+
}
|
22 |
+
}
|
result/acge_text_embedding_a10_bf16/STSB.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "STSB",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"test": {
|
6 |
+
"cos_sim": {
|
7 |
+
"pearson": 0.8156386995511361,
|
8 |
+
"spearman": 0.8273686622131105
|
9 |
+
},
|
10 |
+
"euclidean": {
|
11 |
+
"pearson": 0.824948141156291,
|
12 |
+
"spearman": 0.8272976398817485
|
13 |
+
},
|
14 |
+
"evaluation_time": 1.18,
|
15 |
+
"manhattan": {
|
16 |
+
"pearson": 0.8248268721046512,
|
17 |
+
"spearman": 0.8271507072385981
|
18 |
+
}
|
19 |
+
}
|
20 |
+
}
|
result/acge_text_embedding_a10_bf16/T2Reranking.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "T2Reranking",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"validation": {
|
6 |
+
"evaluation_time": 1202.17,
|
7 |
+
"map": 0.6585592968571603,
|
8 |
+
"mrr": 0.7596156946190799
|
9 |
+
}
|
10 |
+
}
|
result/acge_text_embedding_a10_bf16/T2Retrieval.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "T2Retrieval",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"validation": {
|
6 |
+
"evaluation_time": 1827.95,
|
7 |
+
"map_at_1": 0.27061,
|
8 |
+
"map_at_10": 0.75299,
|
9 |
+
"map_at_100": 0.79106,
|
10 |
+
"map_at_1000": 0.79179,
|
11 |
+
"map_at_3": 0.53062,
|
12 |
+
"map_at_5": 0.65117,
|
13 |
+
"mrr_at_1": 0.88817,
|
14 |
+
"mrr_at_10": 0.91719,
|
15 |
+
"mrr_at_100": 0.91812,
|
16 |
+
"mrr_at_1000": 0.91815,
|
17 |
+
"mrr_at_3": 0.91209,
|
18 |
+
"mrr_at_5": 0.91546,
|
19 |
+
"ndcg_at_1": 0.88817,
|
20 |
+
"ndcg_at_10": 0.83269,
|
21 |
+
"ndcg_at_100": 0.8726,
|
22 |
+
"ndcg_at_1000": 0.87942,
|
23 |
+
"ndcg_at_3": 0.84688,
|
24 |
+
"ndcg_at_5": 0.83242,
|
25 |
+
"precision_at_1": 0.88817,
|
26 |
+
"precision_at_10": 0.41293,
|
27 |
+
"precision_at_100": 0.04994,
|
28 |
+
"precision_at_1000": 0.00515,
|
29 |
+
"precision_at_3": 0.73945,
|
30 |
+
"precision_at_5": 0.6189,
|
31 |
+
"recall_at_1": 0.27061,
|
32 |
+
"recall_at_10": 0.8232,
|
33 |
+
"recall_at_100": 0.95049,
|
34 |
+
"recall_at_1000": 0.98466,
|
35 |
+
"recall_at_3": 0.54877,
|
36 |
+
"recall_at_5": 0.6883
|
37 |
+
}
|
38 |
+
}
|
result/acge_text_embedding_a10_bf16/TNews.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "TNews",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"validation": {
|
6 |
+
"accuracy": 0.53697,
|
7 |
+
"accuracy_stderr": 0.003216846281686451,
|
8 |
+
"evaluation_time": 15.68,
|
9 |
+
"f1": 0.5187777083293563,
|
10 |
+
"f1_stderr": 0.004223883600638354,
|
11 |
+
"main_score": 0.53697
|
12 |
+
}
|
13 |
+
}
|
result/acge_text_embedding_a10_bf16/ThuNewsClusteringP2P.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "ThuNewsClusteringP2P",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 210.99,
|
7 |
+
"v_measure": 0.7348804805577354,
|
8 |
+
"v_measure_std": 0.022460628082213604
|
9 |
+
}
|
10 |
+
}
|
result/acge_text_embedding_a10_bf16/ThuNewsClusteringS2S.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "ThuNewsClusteringS2S",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 55.95,
|
7 |
+
"v_measure": 0.6828918056606984,
|
8 |
+
"v_measure_std": 0.02042687239840596
|
9 |
+
}
|
10 |
+
}
|
result/acge_text_embedding_a10_bf16/VideoRetrieval.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "VideoRetrieval",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"validation": {
|
6 |
+
"evaluation_time": 65.38,
|
7 |
+
"map_at_1": 0.593,
|
8 |
+
"map_at_10": 0.69131,
|
9 |
+
"map_at_100": 0.6965,
|
10 |
+
"map_at_1000": 0.69667,
|
11 |
+
"map_at_3": 0.67667,
|
12 |
+
"map_at_5": 0.68687,
|
13 |
+
"mrr_at_1": 0.593,
|
14 |
+
"mrr_at_10": 0.69131,
|
15 |
+
"mrr_at_100": 0.6965,
|
16 |
+
"mrr_at_1000": 0.69667,
|
17 |
+
"mrr_at_3": 0.67667,
|
18 |
+
"mrr_at_5": 0.68687,
|
19 |
+
"ndcg_at_1": 0.593,
|
20 |
+
"ndcg_at_10": 0.73236,
|
21 |
+
"ndcg_at_100": 0.75514,
|
22 |
+
"ndcg_at_1000": 0.75924,
|
23 |
+
"ndcg_at_3": 0.70302,
|
24 |
+
"ndcg_at_5": 0.72127,
|
25 |
+
"precision_at_1": 0.593,
|
26 |
+
"precision_at_10": 0.0858,
|
27 |
+
"precision_at_100": 0.00959,
|
28 |
+
"precision_at_1000": 0.00099,
|
29 |
+
"precision_at_3": 0.25967,
|
30 |
+
"precision_at_5": 0.1646,
|
31 |
+
"recall_at_1": 0.593,
|
32 |
+
"recall_at_10": 0.858,
|
33 |
+
"recall_at_100": 0.959,
|
34 |
+
"recall_at_1000": 0.991,
|
35 |
+
"recall_at_3": 0.779,
|
36 |
+
"recall_at_5": 0.823
|
37 |
+
}
|
38 |
+
}
|
result/acge_text_embedding_a10_bf16/Waimai.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "Waimai",
|
4 |
+
"mteb_version": "1.1.1",
|
5 |
+
"test": {
|
6 |
+
"accuracy": 0.8855999999999999,
|
7 |
+
"accuracy_stderr": 0.00542586398650022,
|
8 |
+
"ap": 0.7361808496992722,
|
9 |
+
"ap_stderr": 0.011074642485384353,
|
10 |
+
"evaluation_time": 8.39,
|
11 |
+
"f1": 0.8709134854653389,
|
12 |
+
"f1_stderr": 0.0046763453419527284,
|
13 |
+
"main_score": 0.8855999999999999
|
14 |
+
}
|
15 |
+
}
|
result/acge_text_embedding_bf16/AFQMC.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": "b44c3b011063adb25877c13823db83bb193913c4",
|
3 |
+
"mteb_dataset_name": "AFQMC",
|
4 |
+
"mteb_version": "1.1.2",
|
5 |
+
"validation": {
|
6 |
+
"cos_sim": {
|
7 |
+
"pearson": 0.5403219651150428,
|
8 |
+
"spearman": 0.5880567952355933
|
9 |
+
},
|
10 |
+
"euclidean": {
|
11 |
+
"pearson": 0.5747052075207808,
|
12 |
+
"spearman": 0.5880429232297114
|
13 |
+
},
|
14 |
+
"evaluation_time": 2.53,
|
15 |
+
"manhattan": {
|
16 |
+
"pearson": 0.5746163912433917,
|
17 |
+
"spearman": 0.58797778532121
|
18 |
+
}
|
19 |
+
}
|
20 |
+
}
|
result/acge_text_embedding_bf16/ATEC.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": "0f319b1142f28d00e055a6770f3f726ae9b7d865",
|
3 |
+
"mteb_dataset_name": "ATEC",
|
4 |
+
"mteb_version": "1.1.2",
|
5 |
+
"test": {
|
6 |
+
"cos_sim": {
|
7 |
+
"pearson": 0.5352317196374685,
|
8 |
+
"spearman": 0.5794610819724817
|
9 |
+
},
|
10 |
+
"euclidean": {
|
11 |
+
"pearson": 0.6116974418403869,
|
12 |
+
"spearman": 0.5794681861980281
|
13 |
+
},
|
14 |
+
"evaluation_time": 11.13,
|
15 |
+
"manhattan": {
|
16 |
+
"pearson": 0.6116782535933452,
|
17 |
+
"spearman": 0.5794540903298445
|
18 |
+
}
|
19 |
+
}
|
20 |
+
}
|
result/acge_text_embedding_bf16/AmazonReviewsClassification.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": "1399c76144fd37290681b995c656ef9b2e06e26d",
|
3 |
+
"mteb_dataset_name": "AmazonReviewsClassification",
|
4 |
+
"mteb_version": "1.1.2",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 49.61,
|
7 |
+
"zh": {
|
8 |
+
"accuracy": 0.48556,
|
9 |
+
"accuracy_stderr": 0.016404828557470493,
|
10 |
+
"f1": 0.4661852566163211,
|
11 |
+
"f1_stderr": 0.016210688869191376,
|
12 |
+
"main_score": 0.48556
|
13 |
+
}
|
14 |
+
},
|
15 |
+
"validation": {
|
16 |
+
"evaluation_time": 32.97,
|
17 |
+
"zh": {
|
18 |
+
"accuracy": 0.4767600000000001,
|
19 |
+
"accuracy_stderr": 0.01377383025886408,
|
20 |
+
"f1": 0.45757305049914343,
|
21 |
+
"f1_stderr": 0.011974246680296244,
|
22 |
+
"main_score": 0.4767600000000001
|
23 |
+
}
|
24 |
+
}
|
25 |
+
}
|
result/acge_text_embedding_bf16/BQ.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": "e3dda5e115e487b39ec7e618c0c6a29137052a55",
|
3 |
+
"mteb_dataset_name": "BQ",
|
4 |
+
"mteb_version": "1.1.2",
|
5 |
+
"test": {
|
6 |
+
"cos_sim": {
|
7 |
+
"pearson": 0.6826963267181252,
|
8 |
+
"spearman": 0.7036696156869363
|
9 |
+
},
|
10 |
+
"euclidean": {
|
11 |
+
"pearson": 0.6942591718370763,
|
12 |
+
"spearman": 0.703677583116469
|
13 |
+
},
|
14 |
+
"evaluation_time": 5.46,
|
15 |
+
"manhattan": {
|
16 |
+
"pearson": 0.6940127857737215,
|
17 |
+
"spearman": 0.7034572662526427
|
18 |
+
}
|
19 |
+
}
|
20 |
+
}
|
result/acge_text_embedding_bf16/CLSClusteringP2P.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": "4b6227591c6c1a73bc76b1055f3b7f3588e72476",
|
3 |
+
"mteb_dataset_name": "CLSClusteringP2P",
|
4 |
+
"mteb_version": "1.1.2",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 184.69,
|
7 |
+
"v_measure": 0.46546853871797733,
|
8 |
+
"v_measure_std": 0.014569739407015586
|
9 |
+
}
|
10 |
+
}
|
result/acge_text_embedding_bf16/CLSClusteringS2S.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": "e458b3f5414b62b7f9f83499ac1f5497ae2e869f",
|
3 |
+
"mteb_dataset_name": "CLSClusteringS2S",
|
4 |
+
"mteb_version": "1.1.2",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 110.77,
|
7 |
+
"v_measure": 0.4445602575811581,
|
8 |
+
"v_measure_std": 0.012328026830488758
|
9 |
+
}
|
10 |
+
}
|