librarian-bot commited on
Commit
bc38119
1 Parent(s): aad5a07

Librarian Bot: Add base_model information to model

Browse files

This pull request aims to enrich the metadata of your model by adding [`microsoft/swin-base-patch4-window7-224`](https://huggingface.co/microsoft/swin-base-patch4-window7-224) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.

How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection.

**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.

For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co/spaces/librarian-bots/base_model_explorer).

This PR comes courtesy of [Librarian Bot](https://huggingface.co/librarian-bot). If you have any feedback, queries, or need assistance, please don't hesitate to reach out to [@davanstrien](https://huggingface.co/davanstrien).

If you want to automatically add `base_model` metadata to more of your modes you can use the [Librarian Bot](https://huggingface.co/librarian-bot) [Metadata Request Service](https://huggingface.co/spaces/librarian-bots/metadata_request_service)!

Files changed (1) hide show
  1. README.md +26 -25
README.md CHANGED
@@ -6,20 +6,21 @@ datasets:
6
  - food101
7
  metrics:
8
  - accuracy
 
9
  model-index:
10
  - name: swin-finetuned-food101
11
  results:
12
  - task:
13
- name: Image Classification
14
  type: image-classification
 
15
  dataset:
16
  name: food101
17
  type: food101
18
  args: default
19
  metrics:
20
- - name: Accuracy
21
- type: accuracy
22
  value: 0.9210297029702971
 
23
  - task:
24
  type: image-classification
25
  name: Image Classification
@@ -29,49 +30,49 @@ model-index:
29
  config: default
30
  split: validation
31
  metrics:
32
- - name: Accuracy
33
- type: accuracy
34
  value: 0.9135841584158416
 
35
  verified: true
36
- - name: Precision Macro
37
- type: precision
38
  value: 0.9151645786633058
 
39
  verified: true
40
- - name: Precision Micro
41
- type: precision
42
  value: 0.9135841584158416
 
43
  verified: true
44
- - name: Precision Weighted
45
- type: precision
46
  value: 0.915164578663306
 
47
  verified: true
48
- - name: Recall Macro
49
- type: recall
50
  value: 0.9135841584158414
 
51
  verified: true
52
- - name: Recall Micro
53
- type: recall
54
  value: 0.9135841584158416
 
55
  verified: true
56
- - name: Recall Weighted
57
- type: recall
58
  value: 0.9135841584158416
 
59
  verified: true
60
- - name: F1 Macro
61
- type: f1
62
  value: 0.9138785016966742
 
63
  verified: true
64
- - name: F1 Micro
65
- type: f1
66
  value: 0.9135841584158415
 
67
  verified: true
68
- - name: F1 Weighted
69
- type: f1
70
  value: 0.9138785016966743
 
71
  verified: true
72
- - name: loss
73
- type: loss
74
  value: 0.30761435627937317
 
75
  verified: true
76
  ---
77
 
 
6
  - food101
7
  metrics:
8
  - accuracy
9
+ base_model: microsoft/swin-base-patch4-window7-224
10
  model-index:
11
  - name: swin-finetuned-food101
12
  results:
13
  - task:
 
14
  type: image-classification
15
+ name: Image Classification
16
  dataset:
17
  name: food101
18
  type: food101
19
  args: default
20
  metrics:
21
+ - type: accuracy
 
22
  value: 0.9210297029702971
23
+ name: Accuracy
24
  - task:
25
  type: image-classification
26
  name: Image Classification
 
30
  config: default
31
  split: validation
32
  metrics:
33
+ - type: accuracy
 
34
  value: 0.9135841584158416
35
+ name: Accuracy
36
  verified: true
37
+ - type: precision
 
38
  value: 0.9151645786633058
39
+ name: Precision Macro
40
  verified: true
41
+ - type: precision
 
42
  value: 0.9135841584158416
43
+ name: Precision Micro
44
  verified: true
45
+ - type: precision
 
46
  value: 0.915164578663306
47
+ name: Precision Weighted
48
  verified: true
49
+ - type: recall
 
50
  value: 0.9135841584158414
51
+ name: Recall Macro
52
  verified: true
53
+ - type: recall
 
54
  value: 0.9135841584158416
55
+ name: Recall Micro
56
  verified: true
57
+ - type: recall
 
58
  value: 0.9135841584158416
59
+ name: Recall Weighted
60
  verified: true
61
+ - type: f1
 
62
  value: 0.9138785016966742
63
+ name: F1 Macro
64
  verified: true
65
+ - type: f1
 
66
  value: 0.9135841584158415
67
+ name: F1 Micro
68
  verified: true
69
+ - type: f1
 
70
  value: 0.9138785016966743
71
+ name: F1 Weighted
72
  verified: true
73
+ - type: loss
 
74
  value: 0.30761435627937317
75
+ name: loss
76
  verified: true
77
  ---
78