Librarian Bot: Add base_model information to model
Browse filesThis pull request aims to enrich the metadata of your model by adding [`microsoft/swin-base-patch4-window7-224`](https://huggingface.co/microsoft/swin-base-patch4-window7-224) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.
How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection.
**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.
For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co/spaces/librarian-bots/base_model_explorer).
This PR comes courtesy of [Librarian Bot](https://huggingface.co/librarian-bot). If you have any feedback, queries, or need assistance, please don't hesitate to reach out to [@davanstrien](https://huggingface.co/davanstrien).
If you want to automatically add `base_model` metadata to more of your modes you can use the [Librarian Bot](https://huggingface.co/librarian-bot) [Metadata Request Service](https://huggingface.co/spaces/librarian-bots/metadata_request_service)!
@@ -6,20 +6,21 @@ datasets:
|
|
6 |
- food101
|
7 |
metrics:
|
8 |
- accuracy
|
|
|
9 |
model-index:
|
10 |
- name: swin-finetuned-food101
|
11 |
results:
|
12 |
- task:
|
13 |
-
name: Image Classification
|
14 |
type: image-classification
|
|
|
15 |
dataset:
|
16 |
name: food101
|
17 |
type: food101
|
18 |
args: default
|
19 |
metrics:
|
20 |
-
-
|
21 |
-
type: accuracy
|
22 |
value: 0.9210297029702971
|
|
|
23 |
- task:
|
24 |
type: image-classification
|
25 |
name: Image Classification
|
@@ -29,49 +30,49 @@ model-index:
|
|
29 |
config: default
|
30 |
split: validation
|
31 |
metrics:
|
32 |
-
-
|
33 |
-
type: accuracy
|
34 |
value: 0.9135841584158416
|
|
|
35 |
verified: true
|
36 |
-
-
|
37 |
-
type: precision
|
38 |
value: 0.9151645786633058
|
|
|
39 |
verified: true
|
40 |
-
-
|
41 |
-
type: precision
|
42 |
value: 0.9135841584158416
|
|
|
43 |
verified: true
|
44 |
-
-
|
45 |
-
type: precision
|
46 |
value: 0.915164578663306
|
|
|
47 |
verified: true
|
48 |
-
-
|
49 |
-
type: recall
|
50 |
value: 0.9135841584158414
|
|
|
51 |
verified: true
|
52 |
-
-
|
53 |
-
type: recall
|
54 |
value: 0.9135841584158416
|
|
|
55 |
verified: true
|
56 |
-
-
|
57 |
-
type: recall
|
58 |
value: 0.9135841584158416
|
|
|
59 |
verified: true
|
60 |
-
-
|
61 |
-
type: f1
|
62 |
value: 0.9138785016966742
|
|
|
63 |
verified: true
|
64 |
-
-
|
65 |
-
type: f1
|
66 |
value: 0.9135841584158415
|
|
|
67 |
verified: true
|
68 |
-
-
|
69 |
-
type: f1
|
70 |
value: 0.9138785016966743
|
|
|
71 |
verified: true
|
72 |
-
-
|
73 |
-
type: loss
|
74 |
value: 0.30761435627937317
|
|
|
75 |
verified: true
|
76 |
---
|
77 |
|
|
|
6 |
- food101
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
+
base_model: microsoft/swin-base-patch4-window7-224
|
10 |
model-index:
|
11 |
- name: swin-finetuned-food101
|
12 |
results:
|
13 |
- task:
|
|
|
14 |
type: image-classification
|
15 |
+
name: Image Classification
|
16 |
dataset:
|
17 |
name: food101
|
18 |
type: food101
|
19 |
args: default
|
20 |
metrics:
|
21 |
+
- type: accuracy
|
|
|
22 |
value: 0.9210297029702971
|
23 |
+
name: Accuracy
|
24 |
- task:
|
25 |
type: image-classification
|
26 |
name: Image Classification
|
|
|
30 |
config: default
|
31 |
split: validation
|
32 |
metrics:
|
33 |
+
- type: accuracy
|
|
|
34 |
value: 0.9135841584158416
|
35 |
+
name: Accuracy
|
36 |
verified: true
|
37 |
+
- type: precision
|
|
|
38 |
value: 0.9151645786633058
|
39 |
+
name: Precision Macro
|
40 |
verified: true
|
41 |
+
- type: precision
|
|
|
42 |
value: 0.9135841584158416
|
43 |
+
name: Precision Micro
|
44 |
verified: true
|
45 |
+
- type: precision
|
|
|
46 |
value: 0.915164578663306
|
47 |
+
name: Precision Weighted
|
48 |
verified: true
|
49 |
+
- type: recall
|
|
|
50 |
value: 0.9135841584158414
|
51 |
+
name: Recall Macro
|
52 |
verified: true
|
53 |
+
- type: recall
|
|
|
54 |
value: 0.9135841584158416
|
55 |
+
name: Recall Micro
|
56 |
verified: true
|
57 |
+
- type: recall
|
|
|
58 |
value: 0.9135841584158416
|
59 |
+
name: Recall Weighted
|
60 |
verified: true
|
61 |
+
- type: f1
|
|
|
62 |
value: 0.9138785016966742
|
63 |
+
name: F1 Macro
|
64 |
verified: true
|
65 |
+
- type: f1
|
|
|
66 |
value: 0.9135841584158415
|
67 |
+
name: F1 Micro
|
68 |
verified: true
|
69 |
+
- type: f1
|
|
|
70 |
value: 0.9138785016966743
|
71 |
+
name: F1 Weighted
|
72 |
verified: true
|
73 |
+
- type: loss
|
|
|
74 |
value: 0.30761435627937317
|
75 |
+
name: loss
|
76 |
verified: true
|
77 |
---
|
78 |
|