File size: 2,765 Bytes
7647774
 
4770f0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7647774
 
4770f0d
 
7647774
4770f0d
7647774
4770f0d
 
 
 
 
7647774
4770f0d
7647774
4770f0d
7647774
4770f0d
7647774
4770f0d
7647774
4770f0d
7647774
4770f0d
7647774
4770f0d
7647774
4770f0d
7647774
4770f0d
 
 
 
 
 
 
 
 
 
 
7647774
4770f0d
7647774
4770f0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7647774
 
4770f0d
7647774
4770f0d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: mms-1b-all-lg-CV-Fleurs_filtered-100hrs-v1
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: fleurs
      type: fleurs
      config: lg_ug
      split: test
      args: lg_ug
    metrics:
    - name: Wer
      type: wer
      value: 0.4098153547133139
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mms-1b-all-lg-CV-Fleurs_filtered-100hrs-v1

This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2897
- Wer: 0.4098
- Cer: 0.0743

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 70
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 0.3203        | 1.0   | 7125  | 0.3178          | 0.4156 | 0.0762 |
| 0.2149        | 2.0   | 14250 | 0.3008          | 0.4194 | 0.0759 |
| 0.2093        | 3.0   | 21375 | 0.3015          | 0.4017 | 0.0743 |
| 0.2064        | 4.0   | 28500 | 0.3043          | 0.4114 | 0.0745 |
| 0.2042        | 5.0   | 35625 | 0.2955          | 0.4069 | 0.0753 |
| 0.2022        | 6.0   | 42750 | 0.3009          | 0.4088 | 0.0750 |
| 0.1989        | 7.0   | 49875 | 0.3088          | 0.4092 | 0.0756 |
| 0.1983        | 8.0   | 57000 | 0.2980          | 0.4081 | 0.0754 |
| 0.1969        | 9.0   | 64125 | 0.2951          | 0.4040 | 0.0741 |
| 0.1957        | 10.0  | 71250 | 0.2899          | 0.4039 | 0.0745 |
| 0.1945        | 11.0  | 78375 | 0.2896          | 0.4083 | 0.0744 |
| 0.1936        | 12.0  | 85500 | 0.2931          | 0.4038 | 0.0743 |
| 0.1929        | 13.0  | 92625 | 0.2897          | 0.4098 | 0.0743 |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.1.0+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3