sulaimank commited on
Commit
1c1955a
1 Parent(s): 09c7286

End of training

Browse files
Files changed (3) hide show
  1. README.md +105 -195
  2. adapter.lug.safetensors +3 -0
  3. model.safetensors +1 -1
README.md CHANGED
@@ -1,199 +1,109 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: cc-by-nc-4.0
4
+ base_model: facebook/mms-1b-all
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - fleurs
9
+ metrics:
10
+ - wer
11
+ model-index:
12
+ - name: mms-1b-all-lg-CV-Fleurs_filtered-100hrs-v2
13
+ results:
14
+ - task:
15
+ name: Automatic Speech Recognition
16
+ type: automatic-speech-recognition
17
+ dataset:
18
+ name: fleurs
19
+ type: fleurs
20
+ config: lg_ug
21
+ split: test
22
+ args: lg_ug
23
+ metrics:
24
+ - name: Wer
25
+ type: wer
26
+ value: 0.4090379008746356
27
  ---
28
 
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # mms-1b-all-lg-CV-Fleurs_filtered-100hrs-v2
33
+
34
+ This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the fleurs dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.2933
37
+ - Wer: 0.4090
38
+ - Cer: 0.0749
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 0.001
58
+ - train_batch_size: 4
59
+ - eval_batch_size: 2
60
+ - seed: 42
61
+ - gradient_accumulation_steps: 2
62
+ - total_train_batch_size: 8
63
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
64
+ - lr_scheduler_type: linear
65
+ - num_epochs: 70
66
+ - mixed_precision_training: Native AMP
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
71
+ |:-------------:|:-----:|:------:|:---------------:|:------:|:------:|
72
+ | 0.7083 | 1.0 | 7125 | 0.3181 | 0.4363 | 0.0781 |
73
+ | 0.2153 | 2.0 | 14250 | 0.3057 | 0.4327 | 0.0775 |
74
+ | 0.2092 | 3.0 | 21375 | 0.2982 | 0.4040 | 0.0738 |
75
+ | 0.207 | 4.0 | 28500 | 0.3020 | 0.4057 | 0.0740 |
76
+ | 0.2047 | 5.0 | 35625 | 0.3008 | 0.4136 | 0.0790 |
77
+ | 0.2025 | 6.0 | 42750 | 0.3010 | 0.4156 | 0.0763 |
78
+ | 0.1989 | 7.0 | 49875 | 0.3064 | 0.4101 | 0.0754 |
79
+ | 0.1989 | 8.0 | 57000 | 0.2903 | 0.4086 | 0.0751 |
80
+ | 0.1973 | 9.0 | 64125 | 0.2927 | 0.4 | 0.0737 |
81
+ | 0.1961 | 10.0 | 71250 | 0.2882 | 0.3986 | 0.0736 |
82
+ | 0.1952 | 11.0 | 78375 | 0.2895 | 0.4068 | 0.0741 |
83
+ | 0.1943 | 12.0 | 85500 | 0.2950 | 0.4096 | 0.0754 |
84
+ | 0.1933 | 13.0 | 92625 | 0.2945 | 0.4086 | 0.0749 |
85
+ | 0.1926 | 14.0 | 99750 | 0.2933 | 0.4004 | 0.0734 |
86
+ | 0.1912 | 15.0 | 106875 | 0.2925 | 0.4180 | 0.0755 |
87
+ | 0.1909 | 16.0 | 114000 | 0.2949 | 0.4149 | 0.0751 |
88
+ | 0.1902 | 17.0 | 121125 | 0.2888 | 0.4045 | 0.0740 |
89
+ | 0.189 | 18.0 | 128250 | 0.2856 | 0.4086 | 0.0744 |
90
+ | 0.1885 | 19.0 | 135375 | 0.2933 | 0.4125 | 0.0745 |
91
+ | 0.187 | 20.0 | 142500 | 0.2930 | 0.4115 | 0.0746 |
92
+ | 0.1877 | 21.0 | 149625 | 0.2886 | 0.4023 | 0.0737 |
93
+ | 0.1867 | 22.0 | 156750 | 0.2933 | 0.4009 | 0.0730 |
94
+ | 0.1863 | 23.0 | 163875 | 0.2893 | 0.4040 | 0.0738 |
95
+ | 0.1846 | 24.0 | 171000 | 0.2920 | 0.4146 | 0.0753 |
96
+ | 0.185 | 25.0 | 178125 | 0.2907 | 0.4017 | 0.0730 |
97
+ | 0.1836 | 26.0 | 185250 | 0.2939 | 0.3992 | 0.0730 |
98
+ | 0.1827 | 27.0 | 192375 | 0.2934 | 0.4144 | 0.0760 |
99
+ | 0.1827 | 28.0 | 199500 | 0.2962 | 0.4038 | 0.0736 |
100
+ | 0.1818 | 29.0 | 206625 | 0.2917 | 0.4063 | 0.0750 |
101
+ | 0.1818 | 30.0 | 213750 | 0.2933 | 0.4090 | 0.0749 |
102
+
103
+
104
+ ### Framework versions
105
+
106
+ - Transformers 4.46.2
107
+ - Pytorch 2.1.0+cu118
108
+ - Datasets 3.1.0
109
+ - Tokenizers 0.20.3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adapter.lug.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:072b52dd6e3e31d0d90c902f15933f21015ed73fd30dca5b8c7d78f4fe15fb63
3
+ size 8936896
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:147637314e53d6f463c72ebf617c35fbb8f6b49dd81c2cb542d0e0fce5af3956
3
  size 3859029272
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b5d683416a4bc1a51124da33742927902ade9bf17865193dc04f71fbbd8cb9e
3
  size 3859029272