End of training
Browse files- README.md +105 -195
- adapter.lug.safetensors +3 -0
- model.safetensors +1 -1
README.md
CHANGED
@@ -1,199 +1,109 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: cc-by-nc-4.0
|
4 |
+
base_model: facebook/mms-1b-all
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- fleurs
|
9 |
+
metrics:
|
10 |
+
- wer
|
11 |
+
model-index:
|
12 |
+
- name: mms-1b-all-lg-CV-Fleurs_filtered-100hrs-v2
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Automatic Speech Recognition
|
16 |
+
type: automatic-speech-recognition
|
17 |
+
dataset:
|
18 |
+
name: fleurs
|
19 |
+
type: fleurs
|
20 |
+
config: lg_ug
|
21 |
+
split: test
|
22 |
+
args: lg_ug
|
23 |
+
metrics:
|
24 |
+
- name: Wer
|
25 |
+
type: wer
|
26 |
+
value: 0.4090379008746356
|
27 |
---
|
28 |
|
29 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
30 |
+
should probably proofread and complete it, then remove this comment. -->
|
31 |
+
|
32 |
+
# mms-1b-all-lg-CV-Fleurs_filtered-100hrs-v2
|
33 |
+
|
34 |
+
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the fleurs dataset.
|
35 |
+
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.2933
|
37 |
+
- Wer: 0.4090
|
38 |
+
- Cer: 0.0749
|
39 |
+
|
40 |
+
## Model description
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Intended uses & limitations
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training and evaluation data
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Training procedure
|
53 |
+
|
54 |
+
### Training hyperparameters
|
55 |
+
|
56 |
+
The following hyperparameters were used during training:
|
57 |
+
- learning_rate: 0.001
|
58 |
+
- train_batch_size: 4
|
59 |
+
- eval_batch_size: 2
|
60 |
+
- seed: 42
|
61 |
+
- gradient_accumulation_steps: 2
|
62 |
+
- total_train_batch_size: 8
|
63 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
64 |
+
- lr_scheduler_type: linear
|
65 |
+
- num_epochs: 70
|
66 |
+
- mixed_precision_training: Native AMP
|
67 |
+
|
68 |
+
### Training results
|
69 |
+
|
70 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
71 |
+
|:-------------:|:-----:|:------:|:---------------:|:------:|:------:|
|
72 |
+
| 0.7083 | 1.0 | 7125 | 0.3181 | 0.4363 | 0.0781 |
|
73 |
+
| 0.2153 | 2.0 | 14250 | 0.3057 | 0.4327 | 0.0775 |
|
74 |
+
| 0.2092 | 3.0 | 21375 | 0.2982 | 0.4040 | 0.0738 |
|
75 |
+
| 0.207 | 4.0 | 28500 | 0.3020 | 0.4057 | 0.0740 |
|
76 |
+
| 0.2047 | 5.0 | 35625 | 0.3008 | 0.4136 | 0.0790 |
|
77 |
+
| 0.2025 | 6.0 | 42750 | 0.3010 | 0.4156 | 0.0763 |
|
78 |
+
| 0.1989 | 7.0 | 49875 | 0.3064 | 0.4101 | 0.0754 |
|
79 |
+
| 0.1989 | 8.0 | 57000 | 0.2903 | 0.4086 | 0.0751 |
|
80 |
+
| 0.1973 | 9.0 | 64125 | 0.2927 | 0.4 | 0.0737 |
|
81 |
+
| 0.1961 | 10.0 | 71250 | 0.2882 | 0.3986 | 0.0736 |
|
82 |
+
| 0.1952 | 11.0 | 78375 | 0.2895 | 0.4068 | 0.0741 |
|
83 |
+
| 0.1943 | 12.0 | 85500 | 0.2950 | 0.4096 | 0.0754 |
|
84 |
+
| 0.1933 | 13.0 | 92625 | 0.2945 | 0.4086 | 0.0749 |
|
85 |
+
| 0.1926 | 14.0 | 99750 | 0.2933 | 0.4004 | 0.0734 |
|
86 |
+
| 0.1912 | 15.0 | 106875 | 0.2925 | 0.4180 | 0.0755 |
|
87 |
+
| 0.1909 | 16.0 | 114000 | 0.2949 | 0.4149 | 0.0751 |
|
88 |
+
| 0.1902 | 17.0 | 121125 | 0.2888 | 0.4045 | 0.0740 |
|
89 |
+
| 0.189 | 18.0 | 128250 | 0.2856 | 0.4086 | 0.0744 |
|
90 |
+
| 0.1885 | 19.0 | 135375 | 0.2933 | 0.4125 | 0.0745 |
|
91 |
+
| 0.187 | 20.0 | 142500 | 0.2930 | 0.4115 | 0.0746 |
|
92 |
+
| 0.1877 | 21.0 | 149625 | 0.2886 | 0.4023 | 0.0737 |
|
93 |
+
| 0.1867 | 22.0 | 156750 | 0.2933 | 0.4009 | 0.0730 |
|
94 |
+
| 0.1863 | 23.0 | 163875 | 0.2893 | 0.4040 | 0.0738 |
|
95 |
+
| 0.1846 | 24.0 | 171000 | 0.2920 | 0.4146 | 0.0753 |
|
96 |
+
| 0.185 | 25.0 | 178125 | 0.2907 | 0.4017 | 0.0730 |
|
97 |
+
| 0.1836 | 26.0 | 185250 | 0.2939 | 0.3992 | 0.0730 |
|
98 |
+
| 0.1827 | 27.0 | 192375 | 0.2934 | 0.4144 | 0.0760 |
|
99 |
+
| 0.1827 | 28.0 | 199500 | 0.2962 | 0.4038 | 0.0736 |
|
100 |
+
| 0.1818 | 29.0 | 206625 | 0.2917 | 0.4063 | 0.0750 |
|
101 |
+
| 0.1818 | 30.0 | 213750 | 0.2933 | 0.4090 | 0.0749 |
|
102 |
+
|
103 |
+
|
104 |
+
### Framework versions
|
105 |
+
|
106 |
+
- Transformers 4.46.2
|
107 |
+
- Pytorch 2.1.0+cu118
|
108 |
+
- Datasets 3.1.0
|
109 |
+
- Tokenizers 0.20.3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
adapter.lug.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:072b52dd6e3e31d0d90c902f15933f21015ed73fd30dca5b8c7d78f4fe15fb63
|
3 |
+
size 8936896
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3859029272
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b5d683416a4bc1a51124da33742927902ade9bf17865193dc04f71fbbd8cb9e
|
3 |
size 3859029272
|