File size: 4,683 Bytes
27a1a08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c4e56b
 
 
 
 
 
27a1a08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c4e56b
 
 
 
27a1a08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c4e56b
 
27a1a08
 
 
 
 
 
 
 
7c4e56b
27a1a08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
language:
- tr
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
datasets:
- nli_tr
- emrecan/stsb-mt-turkish
license: mit
---

# turkish-medium-bert-uncased-mean-nli-stsb-tr

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search.

This model was adapted from [ytu-ce-cosmos/turkish-medium-bert-uncased](https://huggingface.co/ytu-ce-cosmos/turkish-medium-bert-uncased) and fine-tuned on these datasets:
- [nli_tr](https://huggingface.co/datasets/nli_tr)
- [emrecan/stsb-mt-turkish](https://huggingface.co/datasets/emrecan/stsb-mt-turkish)

:warning: **All texts were manually lowercased,** [as stated](https://huggingface.co/ytu-ce-cosmos/turkish-medium-bert-uncased#%E2%9A%A0-uncased-use-requires-manual-lowercase-conversion) by the model's authors:

 ```python
text.replace("I", "ı").lower()
```

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["Bu örnek bir cümle", "Her cümle dönüştürülür"]

model = SentenceTransformer('atasoglu/turkish-medium-bert-uncased-mean-nli-stsb-tr')
embeddings = model.encode(sentences)
print(embeddings)
```



## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ["Bu örnek bir cümle", "Her cümle dönüştürülür"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('atasoglu/turkish-medium-bert-uncased-mean-nli-stsb-tr')
model = AutoModel.from_pretrained('atasoglu/turkish-medium-bert-uncased-mean-nli-stsb-tr')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```



## Evaluation Results

Achieved results on the [STS-b](https://huggingface.co/datasets/emrecan/stsb-mt-turkish) test split are given below:

```txt
Cosine-Similarity :	    Pearson: 0.8329	Spearman: 0.8336
Manhattan-Distance:	    Pearson: 0.8193	Spearman: 0.8188
Euclidean-Distance:	    Pearson: 0.8198	Spearman: 0.8195
Dot-Product-Similarity:	Pearson: 0.7888	Spearman: 0.7822
```


## Training
The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 90 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` 

Parameters of the fit()-Method:
```
{
    "epochs": 4,
    "evaluation_steps": 9,
    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 36,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Citing & Authors

<!--- Describe where people can find more information -->