ppo-LunarLander-v2 / config.json
atj34's picture
first commit
43e57f3
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bc66d00d900>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bc66d00d990>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bc66d00da20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bc66d00dab0>", "_build": "<function ActorCriticPolicy._build at 0x7bc66d00db40>", "forward": "<function ActorCriticPolicy.forward at 0x7bc66d00dbd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bc66d00dc60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bc66d00dcf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7bc66d00dd80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bc66d00de10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bc66d00dea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bc66d00df30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bc607bb3a00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697359690650183408, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHPLi70OFsA/nebBvi52tDxZMQc9Ngx5vQAAAAAAAAAA0B1zvrr4H709Ajc6u9AKOQRmjT44Jnu5AACAPwAAgD9mf5e93Y2JP2coq7eFx5q+thwvvmaYlj0AAAAAAAAAADOtJD71qBk+pIcivoBxWL4+DP888ZmXPAAAAAAAAAAAGrXUPWtGXz9ZgLs8oz+ZvruczD1VRYM9AAAAAAAAAAAzZBc+zMqkPibod74tv5y+DwejvA5RXL0AAAAAAAAAADMUfL17qqS6s5VHMx63JyytLNQ5+YWsswAAgD8AAIA/ZnrNPJ1yQT/XsqS822+ovsLib7yqdKg8AAAAAAAAAACARTa+hVXqPpWRpD5wdJy+v8LsPcL6UD0AAAAAAAAAAG14iD57XXM/31CAPAOTtr5ndR0+Es2avQAAAAAAAAAA5h4/PV4HPz8BeY28b2uYvsYwDz1yBAs9AAAAAAAAAACaDh0+x4WVPxV45D5qWc2+iRRnPiVcTj4AAAAAAAAAAGYpDz1SF/O7cLRnvZhjA75KLbC8XjylvgAAgD8AAIA/zQbsvEzUNz9f9Ay99peivnOVSb2id6a9AAAAAAAAAADGWDe+Kt2FPyuX471vhIW+jUuGviWwcT0AAAAAAAAAAHpiND7sI9i7JULmuNnSZjYynTy9wiUIOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFHG+oLofWMAWyUTTYBjAF0lEdAkg8br9l2/3V9lChoBkdAcASnLaEi+2gHTRkBaAhHQJIQgSqU/wB1fZQoaAZHQG89LK/20zFoB01aAWgIR0CSEIzIFNcodX2UKGgGR0Bwc0PPLPldaAdNNAFoCEdAkhClOO8013V9lChoBkdAcnbtoSL612gHTTsBaAhHQJIQz7zkIX11fZQoaAZHQHB3Wrjo6jpoB01BAWgIR0CSENgF5fMOdX2UKGgGR0BujXcHnlnzaAdNFgFoCEdAkhGU2Hck+3V9lChoBkdAby3s3Q2MsGgHTTkBaAhHQJIRpKbrkbR1fZQoaAZHQG/sQOWjXWhoB00kAWgIR0CSEijQiRnwdX2UKGgGR0Bt62lO45LiaAdNOgFoCEdAkhLHRLK3eHV9lChoBkdAb0euaF23a2gHTVMBaAhHQJIW/41xbSt1fZQoaAZHQG70xoysS01oB01lAWgIR0CSFyKAavRrdX2UKGgGR0By37gVGkN4aAdNUAFoCEdAkhfgfQrtmnV9lChoBkdAcEtgBcRlH2gHTVYBaAhHQJIYaVW0Z3t1fZQoaAZHQHEE8IzFdcBoB00nAWgIR0CSGKmWMS9NdX2UKGgGR0BtAhD7ZWaMaAdNHAFoCEdAkhmKtcObzHV9lChoBkdAck4LvCuU2WgHTR8BaAhHQJIZ/eaa1Cx1fZQoaAZHQHIApvYODrZoB00rAWgIR0CSGjEc81XOdX2UKGgGR0BsDjDKoybhaAdNNgFoCEdAkhqBYA80UHV9lChoBkdAcBemPHT7VWgHTR0BaAhHQJIa6mLtNSJ1fZQoaAZHQHAUeG47Rv5oB01OAWgIR0CSHFqagElmdX2UKGgGR0Byv8QEpy6uaAdNsgFoCEdAkhxk8A7xNXV9lChoBkdAcTxHCoCMgmgHTT4BaAhHQJIcivfTCtR1fZQoaAZHQGGFzwUg0TFoB03oA2gIR0CSHNB9Cu2adX2UKGgGR0BwQ2wxFiKBaAdNBQFoCEdAkh+Lronrp3V9lChoBkdAcUchfBvaUWgHTawBaAhHQJIg0rwvxpd1fZQoaAZHQG2tBas6q81oB00QAWgIR0CSIVB91EE1dX2UKGgGR0Bw7X9FWn0kaAdNaQFoCEdAkiRlEJBw/HV9lChoBkdAb8wy1uzhP2gHTT0BaAhHQJIkdUYKpkx1fZQoaAZHQG8ALkKeCkJoB00iAWgIR0CSJPlgMMJAdX2UKGgGR0Bx4n3UQTVUaAdNLgFoCEdAkiawJLM9sHV9lChoBkdAcErV8CxNZmgHTXECaAhHQJInEe9zwMJ1fZQoaAZHQG+9opQUHptoB01iAWgIR0CSJz3RG+bmdX2UKGgGR0BvNDQC0WuYaAdNSgFoCEdAkidaeXiR4nV9lChoBkdAcOpTDwYtQWgHTR0BaAhHQJIn01DSgGt1fZQoaAZHQG15P/io86poB02qAWgIR0CSKAPDHfdidX2UKGgGR0BxNYE6kqMFaAdNLwFoCEdAkijcQumJnHV9lChoBkdAa8t8stkFwGgHTUMBaAhHQJIo+hnJ1aJ1fZQoaAZHQG5tl7tzCDVoB02UAWgIR0CSKUSDRMN+dX2UKGgGR0ByG9OzposaaAdNBQFoCEdAkioAsXizcHV9lChoBkdAcux0WuX/pGgHTRgBaAhHQJIr3JcPe551fZQoaAZHQG79uvdM0xdoB006AWgIR0CSLIwN9YwJdX2UKGgGR0Bx0YXvYvnKaAdNGgFoCEdAki2P3nIQv3V9lChoBkdAci0mSyMUAWgHTfIBaAhHQJIuQu3+dbx1fZQoaAZHQHGmET6BRQ9oB00mAWgIR0CSL/T6i0v5dX2UKGgGR0A7lC79Q40eaAdL7WgIR0CSMEVafSQYdX2UKGgGR0Bt4mQjlgc+aAdNdgFoCEdAkjERH9WIXXV9lChoBkdAcczxC6YmcGgHTSUBaAhHQJIxE/8l5W11fZQoaAZHQHIDotQKrrBoB012AWgIR0CSR2f+S8radX2UKGgGR0ByFiPZIxxlaAdNPwFoCEdAkkgfgzguRXV9lChoBkdAcgJE7W/ag2gHTVUBaAhHQJJILY5DJEJ1fZQoaAZHQHGwt+kP+XJoB01cAWgIR0CSSC0Gu9vkdX2UKGgGR0BvPhKJ2t+1aAdNLQFoCEdAkkiUz9CNTHV9lChoBkdAbtQHGCI1tWgHTX4BaAhHQJJJPyhBZ6l1fZQoaAZHQHAmOyNXHR1oB00oAWgIR0CSSaI3zcyndX2UKGgGR0ByQYhEBsAOaAdNfQFoCEdAkksfG+9Jz3V9lChoBkdAbmq6g/Tsp2gHTU8BaAhHQJJMuzZ6D5F1fZQoaAZHQHGn+fEn9ehoB00+AWgIR0CSTOSOzY29dX2UKGgGR0Byccr7O3UhaAdNMAFoCEdAkk1si4axYHV9lChoBkdAcLkwblzU7WgHTSUBaAhHQJJNtaOgg5l1fZQoaAZHQG4jZVfeDWdoB00xAWgIR0CST+FFUhmodX2UKGgGR0Bu19E/jbSJaAdNJAFoCEdAklAtrsSkCXV9lChoBkdAcnmPO6d1+2gHTRIBaAhHQJJQssyzoll1fZQoaAZHQHLqt0FKTStoB00YAWgIR0CSUNYCyQgcdX2UKGgGR0Bxaf+ZPVNIaAdNHwFoCEdAklGMQAdXDHV9lChoBkdAcjy/UONHY2gHTTIBaAhHQJJRso6S1Vp1fZQoaAZHQHFIGgnMMZxoB01XAWgIR0CSUdQhfShKdX2UKGgGR0BwU+75Ec81aAdNFwFoCEdAklIG2kSElHV9lChoBkdAcw8Y/3WWhWgHTVoBaAhHQJJSPH0btJF1fZQoaAZHQHEUQ3o9s8BoB02FAWgIR0CSUkzCUHIIdX2UKGgGR0BwU2d6LOzIaAdNPQFoCEdAklNXqqwQlXV9lChoBkdAcXHQOWjXWmgHTS0BaAhHQJJUXvCuU2V1fZQoaAZHQHIcg3o9s8BoB01BAWgIR0CSVn4j8k2QdX2UKGgGR0BxhK8Gs3hoaAdNMAFoCEdAklaqI7/4qXV9lChoBkdAbvZL6k6902gHTQ4BaAhHQJJYdTZQHiZ1fZQoaAZHQHB23wLE1l5oB00OAWgIR0CSWTNb1RLsdX2UKGgGR0BwLqMfigkDaAdNLQFoCEdAkllV+uvECXV9lChoBkdAcWivB7/n4mgHTQMBaAhHQJJZx9ORDCx1fZQoaAZHQG+jf029+PRoB02lAWgIR0CSWlEd/8VIdX2UKGgGR0BvDgwM6RyPaAdNGgFoCEdAklpkn5SFXnV9lChoBkdAbUpeSB9TgmgHTaIBaAhHQJJbCVu76Hl1fZQoaAZHQHGZ19nbqQloB00fAWgIR0CSW0RBeHBUdX2UKGgGR0Bvo20iQkonaAdNMAFoCEdAklvM7uDzy3V9lChoBkdAcpVPZ7HAAWgHTT0BaAhHQJJb4I6bONZ1fZQoaAZHQGzyEb5uZThoB01KAWgIR0CSXAiLl3hXdX2UKGgGR0BxIuY6XBxhaAdNcQFoCEdAklwZGKAJ9nV9lChoBkdAcDzBIWgvlGgHTUgBaAhHQJJed8G9pRJ1fZQoaAZHQG3fET6BRQ9oB014AWgIR0CSXsIznA6/dX2UKGgGR0Bx4WjSG8EnaAdNKwFoCEdAkl/YigTRIHV9lChoBkdAcZWUkv9LpWgHTSABaAhHQJJh7oxHoX91fZQoaAZHQHJhc14xDb9oB01MAWgIR0CSYrMzMzMzdX2UKGgGR0ByKEZl4C6paAdNNAFoCEdAkmPGb9ZRsXV9lChoBkdAbRx2dupCKWgHTVoBaAhHQJJj+16Vt411fZQoaAZHQHDXtjwx33ZoB00cAWgIR0CSZAlHBk7PdX2UKGgGR0Bt/fmDDjzaaAdNFQFoCEdAkmSGicoYvXV9lChoBkdAbWb6eGwiaGgHTSQBaAhHQJJk76tT1kF1fZQoaAZHQHKHY5ksjFBoB01eAWgIR0CSZTtFrl/6dX2UKGgGR0BwwXWkJrtWaAdNUAFoCEdAkmVxwAEMb3V9lChoBkdAclYvvBrN4mgHTY8BaAhHQJJmEMrmQsB1fZQoaAZHQHFaA2qDK5loB01QAWgIR0CSZmPWQOnVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 254, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}