File size: 909 Bytes
2e4aae9 060e7d7 2e4aae9 060e7d7 2e4aae9 060e7d7 2e4aae9 060e7d7 2e4aae9 060e7d7 8353244 060e7d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
---
license: mit
language: ja
---
Mistral-7B Japanese [LAPT + CLP+]
===
## How to use
```python
from peft import AutoPeftModelForCausalLM
model = AutoPeftModelForCausalLM.from_pretrained(
"atsuki-yamaguchi/Mistral-7B-v0.1-clpp-ja"
)
tokenizer = AutoTokenizer.from_pretrained(
"atsuki-yamaguchi/Mistral-7B-v0.1-clpp-ja"
)
# w/ GPU
model = AutoPeftModelForCausalLM.from_pretrained(
"atsuki-yamaguchi/Mistral-7B-v0.1-clpp-ja",
device_map="auto",
load_in_8bit=True,
)
```
## Citation
```
@article{yamaguchi2024empirical,
title={An Empirical Study on Cross-lingual Vocabulary Adaptation for Efficient Generative {LLM} Inference},
author={Atsuki Yamaguchi and Aline Villavicencio and Nikolaos Aletras},
journal={ArXiv},
year={2024},
volume={abs/2402.10712},
url={https://arxiv.org/abs/2402.10712}
}
```
## Link
For more details, please visit https://github.com/gucci-j/llm-cva
|