atsuki-yamaguchi commited on
Commit
24a1208
1 Parent(s): e54b4fd

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +33 -15
README.md CHANGED
@@ -1,21 +1,39 @@
1
  ---
2
- library_name: peft
 
3
  ---
4
- ## Training procedure
 
5
 
 
 
 
6
 
7
- The following `bitsandbytes` quantization config was used during training:
8
- - quant_method: bitsandbytes
9
- - load_in_8bit: True
10
- - load_in_4bit: False
11
- - llm_int8_threshold: 6.0
12
- - llm_int8_skip_modules: None
13
- - llm_int8_enable_fp32_cpu_offload: False
14
- - llm_int8_has_fp16_weight: False
15
- - bnb_4bit_quant_type: fp4
16
- - bnb_4bit_use_double_quant: False
17
- - bnb_4bit_compute_dtype: float32
18
- ### Framework versions
19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
- - PEFT 0.5.0
 
 
1
  ---
2
+ license: mit
3
+ language: ja
4
  ---
5
+ BLOOM-7B Japanese [LAPT + CLP]
6
+ ===
7
 
8
+ ## How to use
9
+ ```python
10
+ from peft import AutoPeftModelForCausalLM
11
 
12
+ model = AutoPeftModelForCausalLM.from_pretrained(
13
+ "atsuki-yamaguchi/bloom-7b1-clp-ja"
14
+ )
15
+ tokenizer = AutoTokenizer.from_pretrained(
16
+ "atsuki-yamaguchi/bloom-7b1-clp-ja"
17
+ )
 
 
 
 
 
 
18
 
19
+ # w/ GPU
20
+ model = AutoPeftModelForCausalLM.from_pretrained(
21
+ "atsuki-yamaguchi/bloom-7b1-clp-ja",
22
+ device_map="auto",
23
+ load_in_8bit=True,
24
+ )
25
+ ```
26
+ ## Citation
27
+ ```
28
+ @article{yamaguchi2024empirical,
29
+ title={An Empirical Study on Cross-lingual Vocabulary Adaptation for Efficient Generative {LLM} Inference},
30
+ author={Atsuki Yamaguchi and Aline Villavicencio and Nikolaos Aletras},
31
+ journal={ArXiv},
32
+ year={2024},
33
+ volume={abs/2402.10712},
34
+ url={https://arxiv.org/abs/2402.10712}
35
+ }
36
+ ```
37
 
38
+ ## Link
39
+ For more details, please visit https://github.com/gucci-j/llm-cva