|
|
|
"""PyTorch AraGPT2 model.""" |
|
|
|
import math |
|
import os |
|
import warnings |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.cuda.amp import autocast |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
CausalLMOutputWithCrossAttentions, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutputWithPast, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel, SequenceSummary |
|
from transformers.pytorch_utils import ( |
|
Conv1D, |
|
find_pruneable_heads_and_indices, |
|
prune_conv1d_layer, |
|
) |
|
from transformers.utils import ( |
|
ModelOutput, |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map |
|
from .configuration_aragpt2 import AraGPT2Config |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "aubmindlab/aragpt2-mega" |
|
_CONFIG_FOR_DOC = "AraGPT2Config" |
|
_TOKENIZER_FOR_DOC = "GPT2Tokenizer" |
|
|
|
ARAGPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"aubmindlab/aragpt2-large", |
|
"aubmindlab/aragpt2-mega", |
|
|
|
] |
|
|
|
_ARAGPT2_ML_TF_TO_TORCH = { |
|
"LayerNorm_embed_norm": "emb_norm", |
|
"pos_embed": "wpe.weight", |
|
"word_embed": "wte.weight", |
|
"layer": "h", |
|
|
|
|
|
"LayerNorm_mlp_ln0": "ln_1", |
|
"LayerNorm_mlp_ln1": "ln_2", |
|
"intermediate": "mlp.c_fc", |
|
"output": "mlp.c_proj", |
|
"query_layer": "attn.c_attn", |
|
"key_layer": "attn.c_attn", |
|
"value_layer": "attn.c_attn", |
|
"context_projection_layer": "attn.c_proj", |
|
"gamma": "weight", |
|
"kernel": "weight", |
|
"beta": "bias", |
|
"bias": "bias", |
|
} |
|
|
|
WEIGHTS_NAME = "pytorch_model.bin" |
|
CONFIG_NAME = "config.json" |
|
|
|
|
|
def convert_gpt2_checkpoint_to_pytorch( |
|
aragpt2_checkpoint_path, aragpt2_config_file, pytorch_dump_folder_path |
|
): |
|
|
|
if aragpt2_config_file == "": |
|
config = AraGPT2Config() |
|
else: |
|
config = AraGPT2Config.from_json_file(aragpt2_config_file) |
|
model = AraGPT2Model(config) |
|
|
|
|
|
load_tf_weights_in_aragpt2(model, config, aragpt2_checkpoint_path) |
|
|
|
|
|
pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME |
|
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME |
|
print("Save PyTorch model to {}".format(pytorch_weights_dump_path)) |
|
torch.save(model.state_dict(), pytorch_weights_dump_path) |
|
print("Save configuration file to {}".format(pytorch_config_dump_path)) |
|
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: |
|
f.write(config.to_json_string()) |
|
|
|
|
|
|
|
|
|
def load_tf_weights_in_aragpt2(model, config, aragpt2_checkpoint_path): |
|
"""Load tf checkpoints in a pytorch model""" |
|
try: |
|
import re |
|
import tensorflow as tf |
|
except ImportError: |
|
logger.error( |
|
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " |
|
"https://www.tensorflow.org/install/ for installation instructions." |
|
) |
|
raise |
|
tf_path = os.path.abspath(aragpt2_checkpoint_path) |
|
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) |
|
|
|
init_vars = tf.train.list_variables(tf_path) |
|
names = [] |
|
arrays = [] |
|
for name, shape in init_vars: |
|
logger.info("Loading TF weight {} with shape {}".format(name, shape)) |
|
array = tf.train.load_variable(tf_path, name) |
|
names.append(name) |
|
arrays.append(array.squeeze()) |
|
|
|
import copy |
|
|
|
orig_model = copy.deepcopy(model) |
|
|
|
for name, array in zip(names, arrays): |
|
name = name[6:] |
|
name = name.split("/") |
|
pointer = model |
|
|
|
attn_layer = "" |
|
for m_name in name: |
|
if re.fullmatch(r"[A-Za-z]+\d+", m_name): |
|
scope_names = re.split(r"(\d+)", m_name) |
|
else: |
|
scope_names = [m_name] |
|
sname = scope_names[0] |
|
|
|
if sname == "" or sname == "embeddings": |
|
continue |
|
elif sname not in _ARAGPT2_ML_TF_TO_TORCH: |
|
print("=========================================================") |
|
logger.info("Skip var name {}".format(scope_names)) |
|
pointer = None |
|
break |
|
else: |
|
tname = _ARAGPT2_ML_TF_TO_TORCH[sname] |
|
if "." in tname: |
|
parent, child = tname.split(".") |
|
pointer = getattr(pointer, parent) |
|
pointer = getattr(pointer, child) |
|
else: |
|
pointer = getattr(pointer, tname) |
|
|
|
if tname == "attn.c_attn": |
|
attn_layer = sname |
|
|
|
if len(scope_names) >= 2: |
|
num = int(scope_names[1]) |
|
pointer = pointer[num] |
|
|
|
if pointer is None: |
|
continue |
|
if attn_layer == "": |
|
try: |
|
assert pointer.shape == array.shape |
|
except AssertionError as e: |
|
e.args += (pointer.shape, array.shape) |
|
raise |
|
logger.info( |
|
"Initialize PyTorch weight {}, {}, {}".format( |
|
name, array.mean(), pointer.mean() |
|
) |
|
) |
|
if attn_layer == "": |
|
pointer.data = torch.from_numpy(array) |
|
else: |
|
shape = pointer.shape |
|
d = torch.from_numpy(array) |
|
is_bias = len(shape) == 1 |
|
end = int(shape[0 if is_bias else 1] / 3) |
|
m = dict( |
|
query_layer=0, |
|
key_layer=end, |
|
value_layer=end * 2, |
|
) |
|
start = m[attn_layer] |
|
end = start + end |
|
if is_bias: |
|
pointer.data[start:end] = d |
|
else: |
|
pointer.data[:, start:end] = d |
|
logger.info( |
|
"Initialize PyTorch weight {}, {}, {}".format( |
|
name, array.mean(), pointer.mean() |
|
) |
|
) |
|
|
|
for name, params in orig_model.named_parameters(): |
|
for n, p in model.named_parameters(): |
|
if name == n: |
|
if params.equal(p): |
|
print("--------------------------") |
|
print(" %s not changed!" % n) |
|
return model |
|
|
|
|
|
class AraGPT2Attention(nn.Module): |
|
def __init__(self, config, is_cross_attention=False, layer_idx=None): |
|
super().__init__() |
|
|
|
max_positions = config.max_position_embeddings |
|
self.register_buffer( |
|
"bias", |
|
torch.tril( |
|
torch.ones((max_positions, max_positions), dtype=torch.bool) |
|
).view(1, 1, max_positions, max_positions), |
|
persistent=False, |
|
) |
|
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False) |
|
|
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.embed_dim // self.num_heads |
|
self.split_size = self.embed_dim |
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
raise ValueError( |
|
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" |
|
f" {self.num_heads})." |
|
) |
|
|
|
self.scale_attn_weights = config.scale_attn_weights |
|
self.is_cross_attention = is_cross_attention |
|
|
|
|
|
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx |
|
self.layer_idx = layer_idx |
|
self.reorder_and_upcast_attn = config.reorder_and_upcast_attn |
|
|
|
if self.is_cross_attention: |
|
self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim) |
|
self.q_attn = Conv1D(self.embed_dim, self.embed_dim) |
|
else: |
|
self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim) |
|
self.c_proj = Conv1D(self.embed_dim, self.embed_dim) |
|
|
|
self.attn_dropout = nn.Dropout(config.attn_pdrop) |
|
self.resid_dropout = nn.Dropout(config.resid_pdrop) |
|
|
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.num_heads, self.head_dim, self.pruned_heads |
|
) |
|
index_attn = torch.cat( |
|
[index, index + self.split_size, index + (2 * self.split_size)] |
|
) |
|
|
|
|
|
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) |
|
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) |
|
|
|
|
|
self.split_size = (self.split_size // self.num_heads) * ( |
|
self.num_heads - len(heads) |
|
) |
|
self.num_heads = self.num_heads - len(heads) |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def _attn(self, query, key, value, attention_mask=None, head_mask=None): |
|
attn_weights = torch.matmul(query, key.transpose(-1, -2)) |
|
|
|
if self.scale_attn_weights: |
|
attn_weights = attn_weights / torch.full( |
|
[], |
|
value.size(-1) ** 0.5, |
|
dtype=attn_weights.dtype, |
|
device=attn_weights.device, |
|
) |
|
|
|
|
|
if self.scale_attn_by_inverse_layer_idx: |
|
attn_weights = attn_weights / float(self.layer_idx + 1) |
|
|
|
if not self.is_cross_attention: |
|
|
|
query_length, key_length = query.size(-2), key.size(-2) |
|
causal_mask = self.bias[ |
|
:, :, key_length - query_length : key_length, :key_length |
|
] |
|
mask_value = torch.finfo(attn_weights.dtype).min |
|
|
|
|
|
mask_value = torch.full( |
|
[], mask_value, dtype=attn_weights.dtype, device=attn_weights.device |
|
) |
|
attn_weights = torch.where( |
|
causal_mask, attn_weights.to(attn_weights.dtype), mask_value |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
attn_weights = attn_weights + attention_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
|
|
attn_weights = attn_weights.type(value.dtype) |
|
attn_weights = self.attn_dropout(attn_weights) |
|
|
|
|
|
if head_mask is not None: |
|
attn_weights = attn_weights * head_mask |
|
|
|
attn_output = torch.matmul(attn_weights, value) |
|
|
|
return attn_output, attn_weights |
|
|
|
def _upcast_and_reordered_attn( |
|
self, query, key, value, attention_mask=None, head_mask=None |
|
): |
|
|
|
bsz, num_heads, q_seq_len, dk = query.size() |
|
_, _, k_seq_len, _ = key.size() |
|
|
|
|
|
attn_weights = torch.empty( |
|
bsz * num_heads, |
|
q_seq_len, |
|
k_seq_len, |
|
dtype=torch.float32, |
|
device=query.device, |
|
) |
|
|
|
|
|
scale_factor = 1.0 |
|
if self.scale_attn_weights: |
|
scale_factor /= float(value.size(-1)) ** 0.5 |
|
|
|
if self.scale_attn_by_inverse_layer_idx: |
|
scale_factor /= float(self.layer_idx + 1) |
|
|
|
|
|
with autocast(enabled=False): |
|
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape( |
|
-1, dk, k_seq_len |
|
) |
|
attn_weights = torch.baddbmm( |
|
attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor |
|
) |
|
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len) |
|
|
|
if not self.is_cross_attention: |
|
|
|
query_length, key_length = query.size(-2), key.size(-2) |
|
causal_mask = self.bias[ |
|
:, :, key_length - query_length : key_length, :key_length |
|
] |
|
mask_value = torch.finfo(attn_weights.dtype).min |
|
|
|
|
|
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to( |
|
attn_weights.device |
|
) |
|
attn_weights = torch.where(causal_mask, attn_weights, mask_value) |
|
|
|
if attention_mask is not None: |
|
|
|
attn_weights = attn_weights + attention_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
|
|
if attn_weights.dtype != torch.float32: |
|
raise RuntimeError( |
|
"Error with upcasting, attn_weights does not have dtype torch.float32" |
|
) |
|
attn_weights = attn_weights.type(value.dtype) |
|
attn_weights = self.attn_dropout(attn_weights) |
|
|
|
|
|
if head_mask is not None: |
|
attn_weights = attn_weights * head_mask |
|
|
|
attn_output = torch.matmul(attn_weights, value) |
|
|
|
return attn_output, attn_weights |
|
|
|
def _split_heads(self, tensor, num_heads, attn_head_size): |
|
""" |
|
Splits hidden_size dim into attn_head_size and num_heads |
|
""" |
|
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) |
|
tensor = tensor.view(new_shape) |
|
return tensor.permute(0, 2, 1, 3) |
|
|
|
def _merge_heads(self, tensor, num_heads, attn_head_size): |
|
""" |
|
Merges attn_head_size dim and num_attn_heads dim into hidden_size |
|
""" |
|
tensor = tensor.permute(0, 2, 1, 3).contiguous() |
|
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,) |
|
return tensor.view(new_shape) |
|
|
|
def forward( |
|
self, |
|
hidden_states: Optional[Tuple[torch.FloatTensor]], |
|
layer_past: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: |
|
if encoder_hidden_states is not None: |
|
if not hasattr(self, "q_attn"): |
|
raise ValueError( |
|
"If class is used as cross attention, the weights `q_attn` have to be defined. " |
|
"Please make sure to instantiate class with `AraGPT2Attention(..., is_cross_attention=True)`." |
|
) |
|
|
|
query = self.q_attn(hidden_states) |
|
key, value = self.c_attn(encoder_hidden_states).split( |
|
self.split_size, dim=2 |
|
) |
|
attention_mask = encoder_attention_mask |
|
else: |
|
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2) |
|
|
|
query = self._split_heads(query, self.num_heads, self.head_dim) |
|
key = self._split_heads(key, self.num_heads, self.head_dim) |
|
value = self._split_heads(value, self.num_heads, self.head_dim) |
|
|
|
if layer_past is not None: |
|
past_key, past_value = layer_past |
|
key = torch.cat((past_key, key), dim=-2) |
|
value = torch.cat((past_value, value), dim=-2) |
|
|
|
if use_cache is True: |
|
present = (key, value) |
|
else: |
|
present = None |
|
|
|
if self.reorder_and_upcast_attn: |
|
attn_output, attn_weights = self._upcast_and_reordered_attn( |
|
query, key, value, attention_mask, head_mask |
|
) |
|
else: |
|
attn_output, attn_weights = self._attn( |
|
query, key, value, attention_mask, head_mask |
|
) |
|
|
|
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim) |
|
attn_output = self.c_proj(attn_output) |
|
attn_output = self.resid_dropout(attn_output) |
|
|
|
outputs = (attn_output, present) |
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class AraGPT2MLP(nn.Module): |
|
def __init__(self, intermediate_size, config): |
|
super().__init__() |
|
embed_dim = config.hidden_size |
|
self.c_fc = Conv1D(intermediate_size, embed_dim) |
|
self.c_proj = Conv1D(embed_dim, intermediate_size) |
|
self.act = ACT2FN[config.activation_function] |
|
self.dropout = nn.Dropout(config.resid_pdrop) |
|
|
|
def forward( |
|
self, hidden_states: Optional[Tuple[torch.FloatTensor]] |
|
) -> torch.FloatTensor: |
|
hidden_states = self.c_fc(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.c_proj(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class AraGPT2Block(nn.Module): |
|
def __init__(self, config, layer_idx=None): |
|
super().__init__() |
|
hidden_size = config.hidden_size |
|
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size |
|
|
|
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
self.attn = AraGPT2Attention(config, layer_idx=layer_idx) |
|
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
|
|
if config.add_cross_attention: |
|
self.crossattention = AraGPT2Attention( |
|
config, is_cross_attention=True, layer_idx=layer_idx |
|
) |
|
self.ln_cross_attn = nn.LayerNorm( |
|
hidden_size, eps=config.layer_norm_epsilon |
|
) |
|
|
|
self.mlp = AraGPT2MLP(inner_dim, config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: Optional[Tuple[torch.FloatTensor]], |
|
layer_past: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
) -> Union[ |
|
Tuple[torch.Tensor], |
|
Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]], |
|
]: |
|
|
|
|
|
|
|
|
|
attn_outputs = self.attn( |
|
hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
attn_output = attn_outputs[0] |
|
outputs = attn_outputs[1:] |
|
|
|
hidden_states = attn_output + hidden_states |
|
|
|
if encoder_hidden_states is not None: |
|
|
|
if not hasattr(self, "crossattention"): |
|
raise ValueError( |
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with " |
|
"cross-attention layers by setting `config.add_cross_attention=True`" |
|
) |
|
|
|
|
|
|
|
cross_attn_outputs = self.crossattention( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
attn_output = cross_attn_outputs[0] |
|
|
|
hidden_states = attn_output + hidden_states |
|
outputs = ( |
|
outputs + cross_attn_outputs[2:] |
|
) |
|
|
|
residual = hidden_states |
|
hidden_states = self.ln_1(hidden_states) |
|
feed_forward_hidden_states = self.mlp(hidden_states) |
|
|
|
hidden_states = residual + feed_forward_hidden_states |
|
|
|
hidden_states = self.ln_2(hidden_states) |
|
|
|
if use_cache: |
|
outputs = (hidden_states,) + outputs |
|
else: |
|
outputs = (hidden_states,) + outputs[1:] |
|
|
|
return outputs |
|
|
|
|
|
class AraGPT2PreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = AraGPT2Config |
|
load_tf_weights = load_tf_weights_in_aragpt2 |
|
base_model_prefix = "transformer" |
|
is_parallelizable = True |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["AraGPT2Block"] |
|
_skip_keys_device_placement = "past_key_values" |
|
|
|
def __init__(self, *inputs, **kwargs): |
|
super().__init__(*inputs, **kwargs) |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, (nn.Linear, Conv1D)): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for name, p in module.named_parameters(): |
|
if "c_proj" in name and "weight" in name: |
|
|
|
p.data.normal_( |
|
mean=0.0, |
|
std=( |
|
self.config.initializer_range |
|
/ math.sqrt(2 * self.config.n_layer) |
|
), |
|
) |
|
|
|
|
|
@dataclass |
|
class AraGPT2DoubleHeadsModelOutput(ModelOutput): |
|
""" |
|
Base class for outputs of models predicting if two sentences are consecutive or not. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss. |
|
mc_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mc_labels` is provided): |
|
Multiple choice classification loss. |
|
logits (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
mc_logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`): |
|
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax). |
|
past_key_values (`Tuple[Tuple[torch.Tensor]]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of length `config.n_layers`, containing tuples of tensors of shape `(batch_size, num_heads, |
|
sequence_length, embed_size_per_head)`). |
|
|
|
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of |
|
shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
GPT2Attentions weights after the attention softmax, used to compute the weighted average in the |
|
self-attention heads. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
mc_loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
mc_logits: torch.FloatTensor = None |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
AraGPT2_START_DOCSTRING = r""" |
|
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`AraGPT2Config`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
GPT2_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): |
|
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else |
|
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input |
|
sequence tokens in the vocabulary. |
|
|
|
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as |
|
`input_ids`. |
|
|
|
Indices can be obtained using [`GPT2Tokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`): |
|
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see |
|
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have |
|
their past given to this model should not be passed as `input_ids` as they have already been computed. |
|
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for |
|
`past_key_values`. In other words, the `attention_mask` always has to have the length: |
|
`len(past_key_values) + len(input_ids)` |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*): |
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, |
|
1]`: |
|
|
|
- 0 corresponds to a *sentence A* token, |
|
- 1 corresponds to a *sentence B* token. |
|
|
|
[What are token type IDs?](../glossary#token-type-ids) |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
|
|
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see |
|
`past_key_values`). |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
PARALLELIZE_DOCSTRING = r""" |
|
This is an experimental feature and is a subject to change at a moment's notice. |
|
|
|
Uses a device map to distribute attention modules of the model across several devices. If no device map is given, |
|
it will evenly distribute blocks across all devices. |
|
|
|
Args: |
|
device_map (`Dict[int, list]`, optional, defaults to None): |
|
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always |
|
automatically mapped to the first device (for esoteric reasons). That means that the first device should |
|
have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the |
|
following number of attention modules: |
|
|
|
- aubmindlab/aragpt2-mega: 48 |
|
|
|
Example: |
|
|
|
```python |
|
# Here is an example of a device map on a machine with 4 GPUs using aubmindlab/aragpt2-mega, which has a total of 48 attention modules: |
|
model = AraGPT2LMHeadModel.from_pretrained("aubmindlab/aragpt2-mega") |
|
device_map = { |
|
0: [0, 1, 2, 3, 4, 5, 6, 7, 8], |
|
1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], |
|
2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], |
|
3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47], |
|
} |
|
model.parallelize(device_map) |
|
``` |
|
""" |
|
DEPARALLELIZE_DOCSTRING = r""" |
|
Moves the model to cpu from a model parallel state. |
|
|
|
Example: |
|
|
|
```python |
|
# On a 4 GPU machine with aubmindlab/aragpt2-mega: |
|
model = AraGPT2LMHeadModel.from_pretrained("aubmindlab/aragpt2-mega") |
|
device_map = { |
|
0: [0, 1, 2, 3, 4, 5, 6, 7, 8], |
|
1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], |
|
2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], |
|
3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47], |
|
} |
|
model.parallelize(device_map) # Splits the model across several devices |
|
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() |
|
``` |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.", |
|
AraGPT2_START_DOCSTRING, |
|
) |
|
class AraGPT2Model(AraGPT2PreTrainedModel): |
|
_keys_to_ignore_on_load_unexpected = ["attn.masked_bias"] |
|
_keys_to_ignore_on_load_missing = ["attn.masked_bias"] |
|
|
|
def __init__(self, config: AraGPT2Config): |
|
super().__init__(config) |
|
|
|
self.embed_dim = config.hidden_size |
|
|
|
self.wte = nn.Embedding(config.vocab_size, self.embed_dim) |
|
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) |
|
self.emb_norm = nn.LayerNorm( |
|
config.n_embd, eps=config.layer_norm_epsilon |
|
) |
|
self.drop = nn.Dropout(config.embd_pdrop) |
|
self.h = nn.ModuleList( |
|
[AraGPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)] |
|
) |
|
|
|
|
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING) |
|
def parallelize(self, device_map=None): |
|
|
|
warnings.warn( |
|
"`AraGPT2Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your" |
|
" model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" |
|
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1," |
|
" ...}", |
|
FutureWarning, |
|
) |
|
self.device_map = ( |
|
get_device_map(len(self.h), range(torch.cuda.device_count())) |
|
if device_map is None |
|
else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.h)) |
|
self.model_parallel = True |
|
self.first_device = ( |
|
"cpu" |
|
if "cpu" in self.device_map.keys() |
|
else "cuda:" + str(min(self.device_map.keys())) |
|
) |
|
self.last_device = "cuda:" + str(max(self.device_map.keys())) |
|
self.wte = self.wte.to(self.first_device) |
|
self.wpe = self.wpe.to(self.first_device) |
|
|
|
|
|
|
|
self.emb_norm = self.emb_norm.to( |
|
"cuda:" + str(min(self.device_map.keys())) |
|
) |
|
|
|
|
|
|
|
for k, v in self.device_map.items(): |
|
for block in v: |
|
cuda_device = "cuda:" + str(k) |
|
self.h[block] = self.h[block].to(cuda_device) |
|
|
|
|
|
|
|
|
|
@add_start_docstrings(DEPARALLELIZE_DOCSTRING) |
|
def deparallelize(self): |
|
warnings.warn( |
|
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", |
|
FutureWarning, |
|
) |
|
self.model_parallel = False |
|
self.device_map = None |
|
self.first_device = "cpu" |
|
self.last_device = "cpu" |
|
self.wte = self.wte.to("cpu") |
|
self.wpe = self.wpe.to("cpu") |
|
|
|
self.emb_norm = self.emb_norm.to("cpu") |
|
for index in range(len(self.h)): |
|
self.h[index] = self.h[index].to("cpu") |
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
|
def get_input_embeddings(self): |
|
return self.wte |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.wte = new_embeddings |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.h[layer].attn.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPastAndCrossAttentions, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
batch_size = input_ids.shape[0] |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
batch_size = inputs_embeds.shape[0] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids.view(-1, input_shape[-1]) |
|
|
|
if past_key_values is None: |
|
past_length = 0 |
|
past_key_values = tuple([None] * len(self.h)) |
|
else: |
|
past_length = past_key_values[0][0].size(-2) |
|
if position_ids is None: |
|
position_ids = torch.arange( |
|
past_length, |
|
input_shape[-1] + past_length, |
|
dtype=torch.long, |
|
device=device, |
|
) |
|
position_ids = position_ids.unsqueeze(0) |
|
|
|
|
|
if attention_mask is not None: |
|
if batch_size <= 0: |
|
raise ValueError("batch_size has to be defined and > 0") |
|
attention_mask = attention_mask.view(batch_size, -1) |
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask[:, None, None, :] |
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask.to(dtype=self.dtype) |
|
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min |
|
|
|
|
|
|
|
if self.config.add_cross_attention and encoder_hidden_states is not None: |
|
encoder_batch_size, encoder_sequence_length, _ = ( |
|
encoder_hidden_states.size() |
|
) |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.wte(input_ids) |
|
position_embeds = self.wpe(position_ids) |
|
hidden_states = inputs_embeds + position_embeds |
|
|
|
if token_type_ids is not None: |
|
token_type_embeds = self.wte(token_type_ids) |
|
hidden_states = hidden_states + token_type_embeds |
|
|
|
hidden_states = self.drop(hidden_states) |
|
|
|
hidden_states = self.emb_norm(hidden_states) |
|
|
|
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
presents = () if use_cache else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = ( |
|
() if output_attentions and self.config.add_cross_attention else None |
|
) |
|
all_hidden_states = () if output_hidden_states else None |
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): |
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(hidden_states.device) |
|
|
|
if layer_past is not None: |
|
layer_past = tuple( |
|
past_state.to(hidden_states.device) for past_state in layer_past |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(hidden_states.device) |
|
if isinstance(head_mask, torch.Tensor): |
|
head_mask = head_mask.to(hidden_states.device) |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
outputs = self._gradient_checkpointing_func( |
|
block.__call__, |
|
hidden_states, |
|
None, |
|
attention_mask, |
|
head_mask[i], |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
use_cache, |
|
output_attentions, |
|
) |
|
else: |
|
outputs = block( |
|
hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask[i], |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if use_cache is True: |
|
presents = presents + (outputs[1],) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + ( |
|
outputs[2 if use_cache else 1], |
|
) |
|
if self.config.add_cross_attention: |
|
all_cross_attentions = all_cross_attentions + ( |
|
outputs[3 if use_cache else 2], |
|
) |
|
|
|
|
|
if self.model_parallel: |
|
for k, v in self.device_map.items(): |
|
if i == v[-1] and "cuda:" + str(k) != self.last_device: |
|
hidden_states = hidden_states.to("cuda:" + str(k + 1)) |
|
|
|
|
|
|
|
|
|
hidden_states = hidden_states.view(output_shape) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
presents, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input |
|
embeddings). |
|
""", |
|
AraGPT2_START_DOCSTRING, |
|
) |
|
class AraGPT2LMHeadModel(AraGPT2PreTrainedModel): |
|
_keys_to_ignore_on_load_unexpected = [ |
|
r"attn.masked_bias", |
|
r"attn.bias", |
|
r"lm_head.weight", |
|
] |
|
_keys_to_ignore_on_load_missing = [ |
|
r"attn.masked_bias", |
|
r"attn.bias", |
|
r"lm_head.weight", |
|
] |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config: AraGPT2Config): |
|
super().__init__(config) |
|
self.transformer = AraGPT2Model(config) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING) |
|
def parallelize(self, device_map=None): |
|
warnings.warn( |
|
"`GPT2LMHeadModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load" |
|
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" |
|
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':" |
|
" 0, 'transformer.h.1': 1, ...}", |
|
FutureWarning, |
|
) |
|
self.device_map = ( |
|
get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) |
|
if device_map is None |
|
else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.transformer.h)) |
|
self.transformer.parallelize(self.device_map) |
|
self.lm_head = self.lm_head.to(self.transformer.first_device) |
|
self.model_parallel = True |
|
|
|
@add_start_docstrings(DEPARALLELIZE_DOCSTRING) |
|
def deparallelize(self): |
|
warnings.warn( |
|
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", |
|
FutureWarning, |
|
) |
|
self.transformer.deparallelize() |
|
self.transformer = self.transformer.to("cpu") |
|
self.lm_head = self.lm_head.to("cpu") |
|
self.model_parallel = False |
|
torch.cuda.empty_cache() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs |
|
): |
|
token_type_ids = kwargs.get("token_type_ids", None) |
|
|
|
if past_key_values: |
|
past_length = past_key_values[0][0].shape[2] |
|
|
|
|
|
if input_ids.shape[1] > past_length: |
|
remove_prefix_length = past_length |
|
else: |
|
|
|
remove_prefix_length = input_ids.shape[1] - 1 |
|
|
|
input_ids = input_ids[:, remove_prefix_length:] |
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids[:, -input_ids.shape[1] :] |
|
|
|
attention_mask = kwargs.get("attention_mask", None) |
|
position_ids = kwargs.get("position_ids", None) |
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
else: |
|
position_ids = None |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"position_ids": position_ids, |
|
"attention_mask": attention_mask, |
|
"token_type_ids": token_type_ids, |
|
} |
|
) |
|
|
|
return model_inputs |
|
|
|
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=CausalLMOutputWithCrossAttentions, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
|
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.transformer.first_device) |
|
hidden_states = hidden_states.to(self.lm_head.weight.device) |
|
|
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
labels = labels.to(lm_logits.device) |
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1) |
|
) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
cross_attentions=transformer_outputs.cross_attentions, |
|
) |
|
|
|
@staticmethod |
|
def _reorder_cache( |
|
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor |
|
) -> Tuple[Tuple[torch.Tensor]]: |
|
""" |
|
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or |
|
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct |
|
beam_idx at every generation step. |
|
""" |
|
return tuple( |
|
tuple( |
|
past_state.index_select(0, beam_idx.to(past_state.device)) |
|
for past_state in layer_past |
|
) |
|
for layer_past in past_key_values |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for |
|
RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the |
|
input embeddings, the classification head takes as input the input of a specified classification token index in the |
|
input sequence). |
|
""", |
|
AraGPT2_START_DOCSTRING, |
|
) |
|
class AraGPT2DoubleHeadsModel(AraGPT2PreTrainedModel): |
|
_keys_to_ignore_on_load_unexpected = [ |
|
r"attn.masked_bias", |
|
r"attn.bias", |
|
r"lm_head.weight", |
|
] |
|
_keys_to_ignore_on_load_missing = [ |
|
r"attn.masked_bias", |
|
r"attn.bias", |
|
r"lm_head.weight", |
|
] |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config: AraGPT2Config): |
|
super().__init__(config) |
|
config.num_labels = 1 |
|
self.transformer = AraGPT2Model(config) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
self.multiple_choice_head = SequenceSummary(config) |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING) |
|
def parallelize(self, device_map=None): |
|
warnings.warn( |
|
"`GPT2DoubleHeadsModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should" |
|
" load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your" |
|
" own `device_map` but it needs to be a dictionary module_name to device, so for instance" |
|
" {'transformer.h.0': 0, 'transformer.h.1': 1, ...}", |
|
FutureWarning, |
|
) |
|
self.device_map = ( |
|
get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) |
|
if device_map is None |
|
else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.transformer.h)) |
|
self.transformer.parallelize(self.device_map) |
|
self.lm_head = self.lm_head.to(self.transformer.first_device) |
|
self.multiple_choice_head = self.multiple_choice_head.to( |
|
self.transformer.first_device |
|
) |
|
self.model_parallel = True |
|
|
|
@add_start_docstrings(DEPARALLELIZE_DOCSTRING) |
|
def deparallelize(self): |
|
warnings.warn( |
|
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", |
|
FutureWarning, |
|
) |
|
self.transformer.deparallelize() |
|
self.transformer = self.transformer.to("cpu") |
|
self.lm_head = self.lm_head.to("cpu") |
|
self.multiple_choice_head = self.multiple_choice_head.to("cpu") |
|
self.model_parallel = False |
|
torch.cuda.empty_cache() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): |
|
token_type_ids = kwargs.get("token_type_ids", None) |
|
|
|
if past_key_values: |
|
past_length = past_key_values[0][0].shape[2] |
|
|
|
|
|
if input_ids.shape[1] > past_length: |
|
remove_prefix_length = past_length |
|
else: |
|
|
|
remove_prefix_length = input_ids.shape[1] - 1 |
|
|
|
input_ids = input_ids[:, remove_prefix_length:] |
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids[:, -input_ids.shape[1] :] |
|
|
|
attention_mask = kwargs.get("attention_mask", None) |
|
position_ids = kwargs.get("position_ids", None) |
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
else: |
|
position_ids = None |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"position_ids": position_ids, |
|
"attention_mask": attention_mask, |
|
"token_type_ids": token_type_ids, |
|
} |
|
|
|
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) |
|
@replace_return_docstrings( |
|
output_type=AraGPT2DoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
mc_token_ids: Optional[torch.LongTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
mc_labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs, |
|
) -> Union[Tuple, AraGPT2DoubleHeadsModelOutput]: |
|
r""" |
|
mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input): |
|
Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) - |
|
1]`. |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids`. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to |
|
`-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]` |
|
mc_labels (`torch.LongTensor` of shape `(batch_size)`, *optional*): |
|
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` |
|
where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above) |
|
|
|
Return: |
|
|
|
Example: |
|
|
|
```python |
|
>>> import torch |
|
>>> from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel |
|
|
|
>>> tokenizer = GPT2Tokenizer.from_pretrained("aubmindlab/aragpt2-mega") |
|
>>> model = GPT2DoubleHeadsModel.from_pretrained("aubmindlab/aragpt2-mega") |
|
|
|
>>> # Add a [CLS] to the vocabulary (we should train it also!) |
|
>>> num_added_tokens = tokenizer.add_special_tokens({"cls_token": "[CLS]"}) |
|
>>> # Update the model embeddings with the new vocabulary size |
|
>>> embedding_layer = model.resize_token_embeddings(len(tokenizer)) |
|
|
|
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] |
|
>>> encoded_choices = [tokenizer.encode(s) for s in choices] |
|
>>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices] |
|
|
|
>>> input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2 |
|
>>> mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1 |
|
|
|
>>> outputs = model(input_ids, mc_token_ids=mc_token_ids) |
|
>>> lm_logits = outputs.logits |
|
>>> mc_logits = outputs.mc_logits |
|
```""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = transformer_outputs[0] |
|
|
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.transformer.first_device) |
|
hidden_states = hidden_states.to(self.lm_head.weight.device) |
|
|
|
lm_logits = self.lm_head(hidden_states) |
|
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1) |
|
|
|
mc_loss = None |
|
if mc_labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
mc_loss = loss_fct( |
|
mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1) |
|
) |
|
lm_loss = None |
|
if labels is not None: |
|
labels = labels.to(lm_logits.device) |
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
loss_fct = CrossEntropyLoss() |
|
lm_loss = loss_fct( |
|
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1) |
|
) |
|
|
|
if not return_dict: |
|
output = (lm_logits, mc_logits) + transformer_outputs[1:] |
|
if mc_loss is not None: |
|
output = (mc_loss,) + output |
|
return ((lm_loss,) + output) if lm_loss is not None else output |
|
|
|
return AraGPT2DoubleHeadsModelOutput( |
|
loss=lm_loss, |
|
mc_loss=mc_loss, |
|
logits=lm_logits, |
|
mc_logits=mc_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
@staticmethod |
|
def _reorder_cache( |
|
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor |
|
) -> Tuple[Tuple[torch.Tensor]]: |
|
""" |
|
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or |
|
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct |
|
beam_idx at every generation step. |
|
""" |
|
return tuple( |
|
tuple( |
|
past_state.index_select(0, beam_idx.to(past_state.device)) |
|
for past_state in layer_past |
|
) |
|
for layer_past in past_key_values |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The GPT2 Model transformer with a sequence classification head on top (linear layer). |
|
|
|
[`GPT2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models |
|
(e.g. GPT-1) do. |
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a |
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If |
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the |
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in |
|
each row of the batch). |
|
""", |
|
AraGPT2_START_DOCSTRING, |
|
) |
|
class AraGPT2ForSequenceClassification(AraGPT2PreTrainedModel): |
|
_keys_to_ignore_on_load_unexpected = [ |
|
r"h\.\d+\.attn\.masked_bias", |
|
r"lm_head.weight", |
|
] |
|
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head.weight"] |
|
|
|
def __init__(self, config: AraGPT2Config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.transformer = AraGPT2Model(config) |
|
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False) |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
output_type=SequenceClassifierOutputWithPast, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size, sequence_length = input_ids.shape[:2] |
|
else: |
|
batch_size, sequence_length = inputs_embeds.shape[:2] |
|
|
|
assert ( |
|
self.config.pad_token_id is not None or batch_size == 1 |
|
), "Cannot handle batch sizes > 1 if no padding token is defined." |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
|
|
sequence_lengths = ( |
|
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 |
|
) |
|
sequence_lengths = sequence_lengths % input_ids.shape[-1] |
|
sequence_lengths = sequence_lengths.to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
logger.warning( |
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " |
|
"unexpected if using padding tokens in conjunction with `inputs_embeds.`" |
|
) |
|
|
|
pooled_logits = logits[ |
|
torch.arange(batch_size, device=logits.device), sequence_lengths |
|
] |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and ( |
|
labels.dtype == torch.long or labels.dtype == torch.int |
|
): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
pooled_logits.view(-1, self.num_labels), labels.view(-1) |
|
) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
GPT2 Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for |
|
Named-Entity-Recognition (NER) tasks. |
|
""", |
|
AraGPT2_START_DOCSTRING, |
|
) |
|
class AraGPT2ForTokenClassification(AraGPT2PreTrainedModel): |
|
def __init__(self, config: AraGPT2Config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.transformer = AraGPT2Model(config) |
|
if ( |
|
hasattr(config, "classifier_dropout") |
|
and config.classifier_dropout is not None |
|
): |
|
classifier_dropout = config.classifier_dropout |
|
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: |
|
classifier_dropout = config.hidden_dropout |
|
else: |
|
classifier_dropout = 0.1 |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) |
|
|
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
output_type=TokenClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, TokenClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = transformer_outputs[0] |
|
hidden_states = self.dropout(hidden_states) |
|
logits = self.classifier(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + transformer_outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The AraGPT2 Model transformer with a span classification head on top for extractive question-answering tasks like |
|
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). |
|
""", |
|
AraGPT2_START_DOCSTRING, |
|
) |
|
class AraGPT2ForQuestionAnswering(AraGPT2PreTrainedModel): |
|
def __init__(self, config: AraGPT2Config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.transformer = AraGPT2Model(config) |
|
self.qa_outputs = nn.Linear(config.hidden_size, 2) |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward( |
|
GPT2_INPUTS_DOCSTRING.format("batch_size, sequence_length") |
|
) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=QuestionAnsweringModelOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
real_checkpoint=_CHECKPOINT_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
start_positions: Optional[torch.LongTensor] = None, |
|
end_positions: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, QuestionAnsweringModelOutput]: |
|
r""" |
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
|
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1).to(start_logits.device) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1).to(end_logits.device) |
|
|
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|