{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c8fe8a4bf00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690837580762916749, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAPX2o77YQNo+Gg0tPj49Y77+1bW9XnqDPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG3azVlPJq+MAWyUTVEBjAF0lEdAmsms5jpcHHV9lChoBkdAcoaN5MURF2gHTREBaAhHQJrLJjwx33Z1fZQoaAZHQG+DVlPJq7BoB01IAWgIR0Cazhcs189fdX2UKGgGR0BwWBAgPmPpaAdNJAFoCEdAmtAiJKraNHV9lChoBkdAcVM2A5JbuGgHTUkBaAhHQJrSjJKaodd1fZQoaAZHQHBv7f51vEVoB00VAWgIR0Ca1NAf+0gKdX2UKGgGR0Bu1OygPEsKaAdNOgFoCEdAmtehb8m8d3V9lChoBkdAOBXIQvpQlGgHS/9oCEdAmtkBeb/ff3V9lChoBkdAMerqY7aIvmgHTQABaAhHQJraaA08/2V1fZQoaAZHQG56/FzdUKloB01YAWgIR0Ca3VkoF3Y+dX2UKGgGR0BvAfo9s7+2aAdNLQFoCEdAmt8BNEgGKXV9lChoBkdAcLVz+WGATmgHTTQBaAhHQJrgq2c8Tzx1fZQoaAZHQD4t1oxpL29oB00HAWgIR0Ca4iCnP3SKdX2UKGgGR0BuEyGtZFG5aAdNRQFoCEdAmuUKBiCrcXV9lChoBkdAcXjs189fTmgHTRQBaAhHQJrmkXxe9jB1fZQoaAZHQG/nej/MnqpoB00GAWgIR0Ca5/WEsasIdX2UKGgGR0BxIjrqt5lfaAdNLgFoCEdAmuqzq0MPSXV9lChoBkdAb5JPiT+vQmgHTTgBaAhHQJrsYNXo1UF1fZQoaAZHQG/Dr2xptaZoB00VAWgIR0Ca7etkFwDOdX2UKGgGR0BkpJ6IFeOXaAdN2gJoCEdAmvMDA31jAnV9lChoBkdAMUmWt2cJ+mgHS/poCEdAmvRivLX+VHV9lChoBkdAcmeVWS2Yv2gHTQ0BaAhHQJr13NGEwnJ1fZQoaAZHQHECyZBsyi5oB01TAWgIR0Ca+NC2c8T0dX2UKGgGR0ByOIp4KQaKaAdNCwFoCEdAmvpFN+LFXXV9lChoBkdAJ6CRwIdELGgHS+loCEdAmvt/336AOXV9lChoBkdAblb0UXYUWWgHTSYBaAhHQJr+rWbwz+F1fZQoaAZHQG8ZmTC+De1oB00rAWgIR0CbANdxAB1cdX2UKGgGR0Bwb0cQyylfaAdNFQFoCEdAmwL5Tl1bJXV9lChoBkdAFK3NcGC7LGgHS/JoCEdAmwSP5ULlWHV9lChoBkdAbH73ueBg/mgHTRgBaAhHQJsHLOzIFNd1fZQoaAZHQEQsFC9h7VtoB0viaAhHQJsIYuwosqd1fZQoaAZHQHJnT90ihWZoB00oAWgIR0CbCfr6ciGGdX2UKGgGR0Bw6MGqxTsIaAdNUQFoCEdAmwvWZRbbDnV9lChoBkdAb4fdM0xdp2gHTUMBaAhHQJsOvn/1g6V1fZQoaAZHQGHGNapxWDJoB02zAmgIR0CbEn+zdDYzdX2UKGgGR0Bub7b+Lm6oaAdNNwFoCEdAmxVVO9FnZnV9lChoBkdAcBf25xzaK2gHTRoBaAhHQJsW3AAQxvh1fZQoaAZHQDoXr9l2/ztoB0v4aAhHQJsYMjeKsMl1fZQoaAZHQHIVAtjCpFVoB00qAWgIR0CbGvPXTVlPdX2UKGgGR0BuRx95Qgs9aAdNJwFoCEdAmxyU7fYSQHV9lChoBkdAciAqUNayKWgHTRUBaAhHQJseF+CsfaJ1fZQoaAZHQGymF2NedCpoB02YAWgIR0CbIF39aUzLdX2UKGgGR0Bygnt5UtI1aAdNNAFoCEdAmyM5V81Gb3V9lChoBkdAck5VPepGWmgHTTYBaAhHQJsk77SApa11fZQoaAZHQHCj/LDAJsxoB00wAWgIR0CbJpOEug6EdX2UKGgGR0A7UYixFAmiaAdL8WgIR0CbKQGWD6FedX2UKGgGR0BvnnyI55quaAdNEQFoCEdAmyp+qBEroXV9lChoBkdAbeNFAmiQDGgHTRwBaAhHQJssIIyCWeJ1fZQoaAZHQGX8cxKxs2xoB03vAWgIR0CbMT+TNdJKdX2UKGgGR0BxX8g4ffXPaAdNBwFoCEdAmzM43R5TqHV9lChoBkdAQJhKxs2vS2gHS9loCEdAmzRkX1rZanV9lChoBkdActo2GZeAu2gHTSEBaAhHQJs18CSzPbB1fZQoaAZHQHFEbVrhzeZoB00cAWgIR0CbOJH4GlhxdX2UKGgGR0BwRU3FUADJaAdNNgFoCEdAmzo1BY3eenV9lChoBkdAca1gzxgAqGgHTRgBaAhHQJs7t5xBE8d1fZQoaAZHQHJSM0cfeUJoB00YAWgIR0CbPlszVMEidX2UKGgGR0BLVEVWS2YwaAdL5GgIR0CbP5TKkl/pdX2UKGgGR0Bx2I+zMRpUaAdNUgFoCEdAm0Fhoh6jWXV9lChoBkdAcKlVfu1F6WgHTR8BaAhHQJtC52yLQ5Z1fZQoaAZHQHBnVNpM6BBoB005AWgIR0CbRb6gM+eOdX2UKGgGR0Bv1rQC0WuYaAdNGQFoCEdAm0dA5aNdaHV9lChoBkdAcJ4oo/iYLWgHTTYBaAhHQJtI8MZxaPl1fZQoaAZHQEa4znied09oB0vRaAhHQJtKC8rZrYZ1fZQoaAZHQHJeRdyDIzZoB00/AWgIR0CbTOqbBoEkdX2UKGgGR0Bhd23OObRXaAdN6ANoCEdAm1NwnMMZxnV9lChoBkdAcvzX0Gu9vmgHTSIBaAhHQJtVDFwT/Q11fZQoaAZHQHDEAVTJhfBoB00UAWgIR0CbVojs2NvPdX2UKGgGR0ByH5MJx//eaAdNQwFoCEdAm1lpGKAJ9nV9lChoBkdAcN/wqiGnGmgHS/9oCEdAm1rOh4+r2nV9lChoBkdAb7ThlUZNwmgHTVMBaAhHQJtdTT1CgK51fZQoaAZHQHGPA9FF2FFoB005AWgIR0CbX4vi97F9dX2UKGgGR0BwDFMtbs4UaAdNMQFoCEdAm2MCZa3ZwnV9lChoBkdAcg61wo9cKWgHTSQBaAhHQJtkl4HHFP11fZQoaAZHQG3b4cebNKRoB01BAWgIR0CbZk+K0lZ6dX2UKGgGR0Bw2U8mrsByaAdNXgFoCEdAm2ljrNW2gHV9lChoBkdAcDi9/BnBcmgHTTUBaAhHQJtrDNKRMex1fZQoaAZHQG2H/EOy3TdoB01IAWgIR0CbbNTPSlWPdX2UKGgGR0BxNOfBeokzaAdNSwFoCEdAm2+u9alk6XV9lChoBkdAM17WRRuTA2gHS+poCEdAm3D8CLdepnV9lChoBkdAcbFg/keZHGgHTSoBaAhHQJtyl/lQuVZ1fZQoaAZHQG/54g7o0Q9oB00dAWgIR0CbdBlxwQ18dX2UKGgGR0BLw7KifxtpaAdL62gIR0CbdnXTVlPKdX2UKGgGR0BGFdWIXTEzaAdL/GgIR0Cbd8WEbo8qdX2UKGgGR0BHDnTqjaf0aAdL52gIR0CbeQu4wyqNdX2UKGgGR0Bw61B6a9bpaAdNRQFoCEdAm3rDZpSJj3V9lChoBkdARHXp2U0N0GgHS9RoCEdAm30LH+6y0XV9lChoBkdAcfhiblRxcWgHTUwBaAhHQJt+z+l0o0B1fZQoaAZHQHHNTHKfWc1oB00YAWgIR0CbgE/B3zMBdX2UKGgGR0Bs1fHBDXvqaAdNKgFoCEdAm4ME92X9i3V9lChoBkdAcUJR4yGi6GgHTUwBaAhHQJuE0/A0sOJ1fZQoaAZHQHH0MVUMoc9oB003AWgIR0Cbhn2tdRixdX2UKGgGR0ByqmI55qubaAdNOgFoCEdAm4lOG47Rv3V9lChoBkdAbybqdH2AXmgHTUUBaAhHQJuLdgtvn8t1fZQoaAZHQG7d2rXDm8xoB01CAWgIR0CbjcdJ8OTadX2UKGgGR0Bwlz7XQMQVaAdNbAFoCEdAm5CaEzwc53V9lChoBkdAcM+rhzeXRmgHTT8BaAhHQJuTdy4nWrh1fZQoaAZHQG+hOavzOHFoB02LAWgIR0CblZYkE9t/dX2UKGgGR0BxXdkPMB6saAdNSQJoCEdAm5oAP3BYWHV9lChoBkdActt7FsHjZWgHTZMBaAhHQJucN7Uoa1l1fZQoaAZHQEvGETQE6ktoB0vhaAhHQJudb84xUNt1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}