metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: entity-extraction
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.8862817854414493
- name: Recall
type: recall
value: 0.9084908826490659
- name: F1
type: f1
value: 0.8972489227709645
- name: Accuracy
type: accuracy
value: 0.9774889986814304
- task:
type: token-classification
name: entity_extraction
dataset:
type: conll2003
name: conll2003
config: conll2003
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.9703231821006837
verified: true
- name: Precision
type: precision
value: 0.9758137392136365
verified: true
- name: Recall
type: recall
value: 0.9764192759122017
verified: true
- name: F1 Score
type: f1
value: 0.9761164136513085
verified: true
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.9703231821006837
verified: true
- name: Precision
type: precision
value: 0.9758137392136365
verified: true
- name: Recall
type: recall
value: 0.9764192759122017
verified: true
- name: F1
type: f1
value: 0.9761164136513085
verified: true
- name: loss
type: loss
value: 0.105949766933918
verified: true
entity-extraction
This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0808
- Precision: 0.8863
- Recall: 0.9085
- F1: 0.8972
- Accuracy: 0.9775
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2552 | 1.0 | 878 | 0.0808 | 0.8863 | 0.9085 | 0.8972 | 0.9775 |
Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1