File size: 2,756 Bytes
4b272e4 79771c0 e3a425f 79771c0 e3a425f 79771c0 e3a425f 79771c0 e3a425f 79771c0 e3a425f 79771c0 e3a425f 79771c0 e3a425f 79771c0 e3a425f 79771c0 e3a425f 79771c0 e3a425f 79771c0 e3a425f 79771c0 e3a425f 79771c0 e3a425f 79771c0 e3a425f 79771c0 e3a425f 79771c0 e3a425f 79771c0 e3a425f 79771c0 e3a425f 79771c0 e3a425f 79771c0 e3a425f 79771c0 e3a425f 79771c0 e3a425f 79771c0 e3a425f 79771c0 4b272e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: multi-class-classification
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
config: default
split: test
metrics:
- type: accuracy
value: 0.9185
name: Accuracy
verified: true
- type: accuracy
value: 0.9185
name: Accuracy
verified: true
- type: precision
value: 0.8738350796775306
name: Precision Macro
verified: true
- type: precision
value: 0.9185
name: Precision Micro
verified: true
- type: precision
value: 0.9179425177997311
name: Precision Weighted
verified: true
- type: recall
value: 0.8650962919021573
name: Recall Macro
verified: true
- type: recall
value: 0.9185
name: Recall Micro
verified: true
- type: recall
value: 0.9185
name: Recall Weighted
verified: true
- type: f1
value: 0.8692821860210945
name: F1 Macro
verified: true
- type: f1
value: 0.9185
name: F1 Micro
verified: true
- type: f1
value: 0.9181177508591364
name: F1 Weighted
verified: true
- type: loss
value: 0.20907790958881378
name: loss
verified: true
- type: matthews_correlation
value: 0.8920254536671932
name: matthews_correlation
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multi-class-classification
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2009
- Accuracy: 0.928
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2643 | 1.0 | 1000 | 0.2009 | 0.928 |
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
|