File size: 4,169 Bytes
4b272e4 79771c0 c24edc7 4b272e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: multi-class-classification
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.928
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
config: default
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.9185
verified: true
- name: Precision Macro
type: precision
value: 0.8738350796775306
verified: true
- name: Precision Micro
type: precision
value: 0.9185
verified: true
- name: Precision Weighted
type: precision
value: 0.9179425177997311
verified: true
- name: Recall Macro
type: recall
value: 0.8650962919021573
verified: true
- name: Recall Micro
type: recall
value: 0.9185
verified: true
- name: Recall Weighted
type: recall
value: 0.9185
verified: true
- name: F1 Macro
type: f1
value: 0.8692821860210945
verified: true
- name: F1 Micro
type: f1
value: 0.9185
verified: true
- name: F1 Weighted
type: f1
value: 0.9181177508591364
verified: true
- name: loss
type: loss
value: 0.20905950665473938
verified: true
- name: matthews_correlation
type: matthews_correlation
value: 0.8920254536671932
verified: true
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
config: default
split: validation
metrics:
- name: Accuracy
type: accuracy
value: 0.928
verified: true
- name: Precision Macro
type: precision
value: 0.9021100779342405
verified: true
- name: Precision Micro
type: precision
value: 0.928
verified: true
- name: Precision Weighted
type: precision
value: 0.9280919251001837
verified: true
- name: Recall Macro
type: recall
value: 0.8968051962257172
verified: true
- name: Recall Micro
type: recall
value: 0.928
verified: true
- name: Recall Weighted
type: recall
value: 0.928
verified: true
- name: F1 Macro
type: f1
value: 0.8991718089322509
verified: true
- name: F1 Micro
type: f1
value: 0.928
verified: true
- name: F1 Weighted
type: f1
value: 0.9279314819862883
verified: true
- name: loss
type: loss
value: 0.20090055465698242
verified: true
- name: pearsonr
type: pearsonr
value: 0.9157453001659976
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multi-class-classification
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2009
- Accuracy: 0.928
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2643 | 1.0 | 1000 | 0.2009 | 0.928 |
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
|