--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: multi-class-classification results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: default split: test metrics: - type: accuracy value: 0.9185 name: Accuracy verified: true - type: accuracy value: 0.9185 name: Accuracy verified: true - type: precision value: 0.8738350796775306 name: Precision Macro verified: true - type: precision value: 0.9185 name: Precision Micro verified: true - type: precision value: 0.9179425177997311 name: Precision Weighted verified: true - type: recall value: 0.8650962919021573 name: Recall Macro verified: true - type: recall value: 0.9185 name: Recall Micro verified: true - type: recall value: 0.9185 name: Recall Weighted verified: true - type: f1 value: 0.8692821860210945 name: F1 Macro verified: true - type: f1 value: 0.9185 name: F1 Micro verified: true - type: f1 value: 0.9181177508591364 name: F1 Weighted verified: true - type: loss value: 0.20907790958881378 name: loss verified: true - type: matthews_correlation value: 0.8920254536671932 name: matthews_correlation verified: true --- # multi-class-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2009 - Accuracy: 0.928 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2643 | 1.0 | 1000 | 0.2009 | 0.928 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1