autograd162 commited on
Commit
7697a37
0 Parent(s):

Duplicate from autograd162/internlm2_5-20b-chat-12-layers

Browse files
.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "internlm/internlm2_5-20b-chat",
3
+ "architectures": [
4
+ "InternLM2ForCausalLM"
5
+ ],
6
+ "attn_implementation": "eager",
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_internlm2.InternLM2Config",
9
+ "AutoModel": "internlm/internlm2_5-20b-chat--modeling_internlm2.InternLM2ForCausalLM",
10
+ "AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM",
11
+ "AutoModelForSequenceClassification": "internlm/internlm2_5-20b-chat--modeling_internlm2.InternLM2ForSequenceClassification"
12
+ },
13
+ "bias": false,
14
+ "bos_token_id": 1,
15
+ "eos_token_id": 2,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 6144,
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 16384,
20
+ "max_position_embeddings": 32768,
21
+ "model_type": "internlm2",
22
+ "num_attention_heads": 48,
23
+ "num_hidden_layers": 12,
24
+ "num_key_value_heads": 8,
25
+ "pad_token_id": 2,
26
+ "pretraining_tp": 1,
27
+ "rms_norm_eps": 1e-05,
28
+ "rope_scaling": {
29
+ "factor": 2.5,
30
+ "type": "dynamic"
31
+ },
32
+ "rope_theta": 50000000,
33
+ "tie_word_embeddings": false,
34
+ "torch_dtype": "bfloat16",
35
+ "transformers_version": "4.46.0",
36
+ "use_cache": true,
37
+ "vocab_size": 92544
38
+ }
configuration_internlm2.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """ InternLM2 model configuration"""
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
25
+
26
+
27
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
28
+ class InternLM2Config(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
31
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
32
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 32000):
40
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`InternLM2Model`]
42
+ hidden_size (`int`, *optional*, defaults to 4096):
43
+ Dimension of the hidden representations.
44
+ intermediate_size (`int`, *optional*, defaults to 11008):
45
+ Dimension of the MLP representations.
46
+ num_hidden_layers (`int`, *optional*, defaults to 32):
47
+ Number of hidden layers in the Transformer decoder.
48
+ num_attention_heads (`int`, *optional*, defaults to 32):
49
+ Number of attention heads for each attention layer in the Transformer decoder.
50
+ num_key_value_heads (`int`, *optional*):
51
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
52
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
53
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
54
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
55
+ by meanpooling all the original heads within that group. For more details checkout [this
56
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
57
+ `num_attention_heads`.
58
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
59
+ The non-linear activation function (function or string) in the decoder.
60
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
61
+ The maximum sequence length that this model might ever be used with. InternLM2 supports up to 32768 tokens.
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ pad_token_id (`int`, *optional*):
70
+ Padding token id.
71
+ bos_token_id (`int`, *optional*, defaults to 1):
72
+ Beginning of stream token id.
73
+ eos_token_id (`int`, *optional*, defaults to 2):
74
+ End of stream token id.
75
+ pretraining_tp (`int`, *optional*, defaults to 1):
76
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
77
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism)
78
+ to understand more about it. This value is necessary to ensure exact reproducibility
79
+ of the pretraining results. Please refer to [this
80
+ issue](https://github.com/pytorch/pytorch/issues/76232).
81
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
82
+ Whether to tie weight embeddings
83
+ rope_theta (`float`, *optional*, defaults to 10000.0):
84
+ The base period of the RoPE embeddings.
85
+ rope_scaling (`Dict`, *optional*):
86
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
87
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
88
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
89
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
90
+ these scaling strategies behave:
91
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
92
+ experimental feature, subject to breaking API changes in future versions.
93
+ """
94
+ _auto_class = "AutoConfig"
95
+ model_type = "internlm2"
96
+ keys_to_ignore_at_inference = ["past_key_values"]
97
+
98
+ def __init__( # pylint: disable=W0102
99
+ self,
100
+ vocab_size=103168,
101
+ hidden_size=4096,
102
+ intermediate_size=11008,
103
+ num_hidden_layers=32,
104
+ num_attention_heads=32,
105
+ num_key_value_heads=None,
106
+ hidden_act="silu",
107
+ max_position_embeddings=2048,
108
+ initializer_range=0.02,
109
+ rms_norm_eps=1e-6,
110
+ use_cache=True,
111
+ pad_token_id=0,
112
+ bos_token_id=1,
113
+ eos_token_id=2,
114
+ pretraining_tp=1,
115
+ tie_word_embeddings=False,
116
+ bias=True,
117
+ rope_theta=10000,
118
+ rope_scaling=None,
119
+ attn_implementation=None,
120
+ **kwargs,
121
+ ):
122
+ self.vocab_size = vocab_size
123
+ self.max_position_embeddings = max_position_embeddings
124
+ self.hidden_size = hidden_size
125
+ self.intermediate_size = intermediate_size
126
+ self.num_hidden_layers = num_hidden_layers
127
+ self.num_attention_heads = num_attention_heads
128
+ self.bias = bias
129
+
130
+ if num_key_value_heads is None:
131
+ num_key_value_heads = num_attention_heads
132
+ self.num_key_value_heads = num_key_value_heads
133
+
134
+ self.hidden_act = hidden_act
135
+ self.initializer_range = initializer_range
136
+ self.rms_norm_eps = rms_norm_eps
137
+ self.pretraining_tp = pretraining_tp
138
+ self.use_cache = use_cache
139
+ self.rope_theta = rope_theta
140
+ self.rope_scaling = rope_scaling
141
+ self._rope_scaling_validation()
142
+ self.attn_implementation = attn_implementation
143
+ if self.attn_implementation is None:
144
+ self.attn_implementation = "eager"
145
+
146
+ super().__init__(
147
+ pad_token_id=pad_token_id,
148
+ bos_token_id=bos_token_id,
149
+ eos_token_id=eos_token_id,
150
+ tie_word_embeddings=tie_word_embeddings,
151
+ **kwargs,
152
+ )
153
+
154
+ def _rope_scaling_validation(self):
155
+ """
156
+ Validate the `rope_scaling` configuration.
157
+ """
158
+ if self.rope_scaling is None:
159
+ return
160
+
161
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
162
+ raise ValueError(
163
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
164
+ f"got {self.rope_scaling}"
165
+ )
166
+ rope_scaling_type = self.rope_scaling.get("type", None)
167
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
168
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
169
+ raise ValueError(
170
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
171
+ )
172
+ if (
173
+ rope_scaling_factor is None
174
+ or not isinstance(rope_scaling_factor, (float, int))
175
+ or rope_scaling_factor < 1.0
176
+ ):
177
+ raise ValueError(
178
+ f"`rope_scaling`'s factor field must be a number >= 1, got {rope_scaling_factor} "
179
+ f"of type {type(rope_scaling_factor)}"
180
+ )
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 2,
6
+ "transformers_version": "4.46.0"
7
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45320aa6a4ee69ffa8b523534d669c842636a342198f7159155a19ef6eeafad7
3
+ size 4836658856
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4746c7a09155e4c13334fd601a149cb38bb57871a2f8947bb2f154955a4a6617
3
+ size 4983010408
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:085caa390d42062024a7f8bb1218543dfc1e6bc4a79a1dabb71b1b71c94448b0
3
+ size 1816695672
model.safetensors.index.json ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 11636355072
4
+ },
5
+ "weight_map": {
6
+ "model.layers.0.attention.wo.weight": "model-00001-of-00003.safetensors",
7
+ "model.layers.0.attention.wqkv.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.attention_norm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.feed_forward.w1.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.feed_forward.w2.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.feed_forward.w3.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.ffn_norm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.1.attention.wo.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.1.attention.wqkv.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.1.attention_norm.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.1.feed_forward.w1.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.feed_forward.w2.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.feed_forward.w3.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.ffn_norm.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.10.attention.wo.weight": "model-00002-of-00003.safetensors",
21
+ "model.layers.10.attention.wqkv.weight": "model-00002-of-00003.safetensors",
22
+ "model.layers.10.attention_norm.weight": "model-00002-of-00003.safetensors",
23
+ "model.layers.10.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
24
+ "model.layers.10.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
25
+ "model.layers.10.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
26
+ "model.layers.10.ffn_norm.weight": "model-00002-of-00003.safetensors",
27
+ "model.layers.11.attention.wo.weight": "model-00003-of-00003.safetensors",
28
+ "model.layers.11.attention.wqkv.weight": "model-00002-of-00003.safetensors",
29
+ "model.layers.11.attention_norm.weight": "model-00003-of-00003.safetensors",
30
+ "model.layers.11.feed_forward.w1.weight": "model-00003-of-00003.safetensors",
31
+ "model.layers.11.feed_forward.w2.weight": "model-00003-of-00003.safetensors",
32
+ "model.layers.11.feed_forward.w3.weight": "model-00003-of-00003.safetensors",
33
+ "model.layers.11.ffn_norm.weight": "model-00003-of-00003.safetensors",
34
+ "model.layers.2.attention.wo.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.2.attention.wqkv.weight": "model-00001-of-00003.safetensors",
36
+ "model.layers.2.attention_norm.weight": "model-00001-of-00003.safetensors",
37
+ "model.layers.2.feed_forward.w1.weight": "model-00001-of-00003.safetensors",
38
+ "model.layers.2.feed_forward.w2.weight": "model-00001-of-00003.safetensors",
39
+ "model.layers.2.feed_forward.w3.weight": "model-00001-of-00003.safetensors",
40
+ "model.layers.2.ffn_norm.weight": "model-00001-of-00003.safetensors",
41
+ "model.layers.3.attention.wo.weight": "model-00001-of-00003.safetensors",
42
+ "model.layers.3.attention.wqkv.weight": "model-00001-of-00003.safetensors",
43
+ "model.layers.3.attention_norm.weight": "model-00001-of-00003.safetensors",
44
+ "model.layers.3.feed_forward.w1.weight": "model-00001-of-00003.safetensors",
45
+ "model.layers.3.feed_forward.w2.weight": "model-00001-of-00003.safetensors",
46
+ "model.layers.3.feed_forward.w3.weight": "model-00001-of-00003.safetensors",
47
+ "model.layers.3.ffn_norm.weight": "model-00001-of-00003.safetensors",
48
+ "model.layers.4.attention.wo.weight": "model-00001-of-00003.safetensors",
49
+ "model.layers.4.attention.wqkv.weight": "model-00001-of-00003.safetensors",
50
+ "model.layers.4.attention_norm.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.4.feed_forward.w1.weight": "model-00001-of-00003.safetensors",
52
+ "model.layers.4.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.4.feed_forward.w3.weight": "model-00001-of-00003.safetensors",
54
+ "model.layers.4.ffn_norm.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.5.attention.wo.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.5.attention.wqkv.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.5.attention_norm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.5.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.5.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.5.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.5.ffn_norm.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.6.attention.wo.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.6.attention.wqkv.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.6.attention_norm.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.6.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.6.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.6.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.6.ffn_norm.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.7.attention.wo.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.7.attention.wqkv.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.7.attention_norm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.7.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.7.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.7.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.7.ffn_norm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.8.attention.wo.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.8.attention.wqkv.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.8.attention_norm.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.8.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.8.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.8.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.8.ffn_norm.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.9.attention.wo.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.9.attention.wqkv.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.9.attention_norm.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.9.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.9.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.9.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.9.ffn_norm.weight": "model-00002-of-00003.safetensors",
90
+ "model.norm.weight": "model-00003-of-00003.safetensors",
91
+ "model.tok_embeddings.weight": "model-00001-of-00003.safetensors",
92
+ "output.weight": "model-00003-of-00003.safetensors"
93
+ }
94
+ }
modeling_internlm2.py ADDED
@@ -0,0 +1,1808 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn.functional as F
24
+ import torch.utils.checkpoint
25
+ from einops import rearrange
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+ from transformers.activations import ACT2FN
29
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
30
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
31
+ from transformers.modeling_outputs import (
32
+ BaseModelOutputWithPast,
33
+ CausalLMOutputWithPast,
34
+ QuestionAnsweringModelOutput,
35
+ SequenceClassifierOutputWithPast,
36
+ TokenClassifierOutput,
37
+ )
38
+ from transformers.modeling_utils import PreTrainedModel
39
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
40
+ from transformers.utils import (
41
+ add_start_docstrings,
42
+ add_start_docstrings_to_model_forward,
43
+ is_flash_attn_greater_or_equal_2_10,
44
+ logging,
45
+ replace_return_docstrings,
46
+ )
47
+
48
+ try:
49
+ from transformers.generation.streamers import BaseStreamer
50
+ except Exception:
51
+ BaseStreamer = None
52
+
53
+ from .configuration_internlm2 import InternLM2Config
54
+
55
+
56
+ try:
57
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
58
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
59
+ except:
60
+ pass
61
+
62
+ try:
63
+ support_bf16_triu = torch.__version__ >= "2.1.0"
64
+ except Exception:
65
+ support_bf16_triu = False
66
+
67
+ logger = logging.get_logger(__name__)
68
+
69
+ _CONFIG_FOR_DOC = "InternLM2Config"
70
+
71
+
72
+ def _get_unpad_data(attention_mask):
73
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
74
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
75
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
76
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) # pylint: disable=E1102
77
+ return (
78
+ indices,
79
+ cu_seqlens,
80
+ max_seqlen_in_batch,
81
+ )
82
+
83
+
84
+ class InternLM2RMSNorm(nn.Module):
85
+ """InternLM2RMSNorm is equivalent to T5LayerNorm."""
86
+
87
+ def __init__(self, hidden_size, eps=1e-6):
88
+ super().__init__()
89
+ self.weight = nn.Parameter(torch.ones(hidden_size))
90
+ self.variance_epsilon = eps
91
+
92
+ def forward(self, hidden_states):
93
+ input_dtype = hidden_states.dtype
94
+ hidden_states = hidden_states.to(torch.float32)
95
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
96
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
97
+ return self.weight * hidden_states.to(input_dtype)
98
+
99
+
100
+ ALL_LAYERNORM_LAYERS.append(InternLM2RMSNorm)
101
+
102
+
103
+ class InternLM2RotaryEmbedding(nn.Module):
104
+ """Rotary Position Embedding for the InternLM2 model. Credits to the Reddit user /u/lucidrains."""
105
+
106
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
107
+ super().__init__()
108
+ self.scaling_factor = scaling_factor
109
+ self.dim = dim
110
+ self.max_position_embeddings = max_position_embeddings
111
+ self.base = base
112
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
113
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
114
+ # For BC we register cos and sin cached
115
+ self.max_seq_len_cached = max_position_embeddings
116
+
117
+ @torch.no_grad()
118
+ def forward(self, x, position_ids):
119
+ # x: [bs, num_attention_heads, seq_len, head_size]
120
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
121
+ position_ids_expanded = position_ids[:, None, :].float()
122
+ # Force float32 since bfloat16 loses precision on long contexts
123
+ # See https://github.com/huggingface/transformers/pull/29285
124
+ device_type = x.device.type
125
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
126
+ with torch.autocast(device_type=device_type, enabled=False):
127
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
128
+ emb = torch.cat((freqs, freqs), dim=-1)
129
+ cos = emb.cos()
130
+ sin = emb.sin()
131
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
132
+
133
+
134
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
135
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
136
+
137
+ def forward(self, x, position_ids):
138
+ # difference to the original RoPE: a scaling factor is aplied to the position ids
139
+ position_ids = position_ids.float() / self.scaling_factor
140
+ cos, sin = super().forward(x, position_ids)
141
+ return cos, sin
142
+
143
+
144
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
145
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
146
+ Credits to the Reddit users /u/bloc97 and /u/emozilla"""
147
+
148
+ def forward(self, x, position_ids):
149
+ # difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
150
+ seq_len = torch.max(position_ids) + 1
151
+ if seq_len > self.max_position_embeddings:
152
+ base = self.base * (
153
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
154
+ ) ** (self.dim / (self.dim - 2))
155
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim))
156
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
157
+
158
+ cos, sin = super().forward(x, position_ids)
159
+ return cos, sin
160
+
161
+
162
+ def rotate_half(x):
163
+ """Rotates half the hidden dims of the input."""
164
+ x1 = x[..., : x.shape[-1] // 2]
165
+ x2 = x[..., x.shape[-1] // 2 :]
166
+ return torch.cat((-x2, x1), dim=-1)
167
+
168
+
169
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): # pylint: disable=unused-argument
170
+ """Applies Rotary Position Embedding to the query and key tensors.
171
+
172
+ Args:
173
+ q (`torch.Tensor`): The query tensor.
174
+ k (`torch.Tensor`): The key tensor.
175
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
176
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
177
+ position_ids (`torch.Tensor`, *optional*):
178
+ Deprecated and unused.
179
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
180
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
181
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
182
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
183
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
184
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
185
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
186
+ Returns:
187
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
188
+ """
189
+ cos = cos.unsqueeze(unsqueeze_dim)
190
+ sin = sin.unsqueeze(unsqueeze_dim)
191
+ q_embed = (q * cos) + (rotate_half(q) * sin)
192
+ k_embed = (k * cos) + (rotate_half(k) * sin)
193
+ return q_embed, k_embed
194
+
195
+
196
+ class InternLM2MLP(nn.Module):
197
+ """MLP for InternLM2 model."""
198
+
199
+ def __init__(self, config):
200
+ super().__init__()
201
+ self.config = config
202
+ self.hidden_size = config.hidden_size
203
+ self.intermediate_size = config.intermediate_size
204
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
205
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
206
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
207
+ self.act_fn = ACT2FN[config.hidden_act]
208
+
209
+ def forward(self, x):
210
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
211
+
212
+ return down_proj
213
+
214
+
215
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
216
+ """
217
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
218
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
219
+ """
220
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
221
+ if n_rep == 1:
222
+ return hidden_states
223
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
224
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
225
+
226
+
227
+ class InternLM2Attention(nn.Module):
228
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
229
+
230
+ def __init__(self, config: InternLM2Config, layer_idx: Optional[int] = None):
231
+ super().__init__()
232
+ self.config = config
233
+ self.layer_idx = layer_idx
234
+ if layer_idx is None:
235
+ logger.warning_once(
236
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
237
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
238
+ "when creating this class."
239
+ )
240
+
241
+ self.hidden_size = config.hidden_size
242
+ self.num_heads = config.num_attention_heads
243
+ self.head_dim = self.hidden_size // self.num_heads
244
+ self.num_key_value_heads = config.num_key_value_heads
245
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
246
+ self.max_position_embeddings = config.max_position_embeddings
247
+ self.rope_theta = config.rope_theta
248
+ self.is_causal = True
249
+
250
+ if (self.head_dim * self.num_heads) != self.hidden_size:
251
+ raise ValueError(
252
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
253
+ f" and `num_heads`: {self.num_heads})."
254
+ )
255
+
256
+ self.wqkv = nn.Linear(
257
+ self.hidden_size,
258
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
259
+ bias=config.bias,
260
+ )
261
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
262
+
263
+ self._init_rope()
264
+
265
+ def _init_rope(self):
266
+ if self.config.rope_scaling is None:
267
+ self.rotary_emb = InternLM2RotaryEmbedding(
268
+ self.head_dim,
269
+ max_position_embeddings=self.max_position_embeddings,
270
+ base=self.rope_theta,
271
+ )
272
+ else:
273
+ scaling_type = self.config.rope_scaling["type"]
274
+ scaling_factor = self.config.rope_scaling["factor"]
275
+ if scaling_type == "linear":
276
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
277
+ self.head_dim,
278
+ max_position_embeddings=self.max_position_embeddings,
279
+ scaling_factor=scaling_factor,
280
+ base=self.rope_theta,
281
+ )
282
+ elif scaling_type == "dynamic":
283
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
284
+ self.head_dim,
285
+ max_position_embeddings=self.max_position_embeddings,
286
+ scaling_factor=scaling_factor,
287
+ base=self.rope_theta,
288
+ )
289
+ else:
290
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
291
+
292
+ def forward(
293
+ self,
294
+ hidden_states: torch.Tensor,
295
+ attention_mask: Optional[torch.Tensor] = None,
296
+ position_ids: Optional[torch.LongTensor] = None,
297
+ past_key_value: Optional[Cache] = None,
298
+ output_attentions: bool = False,
299
+ use_cache: bool = False, # pylint: disable=unused-argument
300
+ cache_position: Optional[torch.LongTensor] = None,
301
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
302
+ bsz, q_len, _ = hidden_states.size()
303
+
304
+ if self.config.pretraining_tp > 1:
305
+ # split qkv_states by tp size
306
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
307
+ qkv_slices = self.wqkv.weight.split(key_value_slicing, dim=0)
308
+ qkv_states = torch.cat(
309
+ [F.linear(hidden_states, qkv_slice) for qkv_slice in qkv_slices], dim=-1 # pylint: disable=E1102
310
+ )
311
+ else:
312
+ qkv_states = self.wqkv(hidden_states)
313
+
314
+ qkv_states = rearrange(
315
+ qkv_states,
316
+ "b q (h gs d) -> b q h gs d",
317
+ gs=2 + self.num_key_value_groups,
318
+ d=self.head_dim,
319
+ )
320
+
321
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
322
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d").transpose(1, 2)
323
+ key_states = qkv_states[..., -2, :].transpose(1, 2)
324
+ value_states = qkv_states[..., -1, :].transpose(1, 2)
325
+
326
+ cos, sin = self.rotary_emb(value_states, position_ids)
327
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
328
+
329
+ if past_key_value is not None:
330
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
331
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
332
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
333
+
334
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
335
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
336
+
337
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
338
+
339
+ if attention_mask is not None: # no matter the length, we just slice it
340
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
341
+ attn_weights = attn_weights + causal_mask
342
+
343
+ # upcast attention to fp32
344
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
345
+ attn_output = torch.matmul(attn_weights, value_states)
346
+
347
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
348
+ raise ValueError(
349
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
350
+ f" {attn_output.size()}"
351
+ )
352
+
353
+ attn_output = attn_output.transpose(1, 2).contiguous()
354
+
355
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
356
+
357
+ if self.config.pretraining_tp > 1:
358
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
359
+ o_proj_slices = self.wo.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
360
+ attn_output = sum(
361
+ [
362
+ F.linear(attn_output[i], o_proj_slices[i]) # pylint: disable=E1102
363
+ for i in range(self.config.pretraining_tp)
364
+ ]
365
+ )
366
+ else:
367
+ attn_output = self.wo(attn_output)
368
+
369
+ if not output_attentions:
370
+ attn_weights = None
371
+
372
+ return attn_output, attn_weights, past_key_value
373
+
374
+
375
+ class InternLM2FlashAttention2(InternLM2Attention):
376
+ """
377
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
378
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
379
+ flash attention and deal with padding tokens in case the input contains any of them.
380
+ """
381
+
382
+ def __init__(self, *args, **kwargs):
383
+ super().__init__(*args, **kwargs)
384
+
385
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
386
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement,
387
+ # that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
388
+ # Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
389
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1)
390
+ # produces a wrong mask (top-left).
391
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
392
+
393
+ def forward(
394
+ self,
395
+ hidden_states: torch.Tensor,
396
+ attention_mask: Optional[torch.LongTensor] = None,
397
+ position_ids: Optional[torch.LongTensor] = None,
398
+ past_key_value: Optional[Cache] = None,
399
+ output_attentions: bool = False,
400
+ use_cache: bool = False,
401
+ cache_position: Optional[torch.LongTensor] = None,
402
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
403
+ if isinstance(past_key_value, StaticCache):
404
+ raise ValueError(
405
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
406
+ "make sure to use `sdpa` in the mean time, and open an issue at "
407
+ "https://github.com/huggingface/transformers"
408
+ )
409
+
410
+ output_attentions = False
411
+
412
+ bsz, q_len, _ = hidden_states.size()
413
+
414
+ qkv_states = self.wqkv(hidden_states)
415
+
416
+ qkv_states = rearrange(
417
+ qkv_states,
418
+ "b q (h gs d) -> b q h gs d",
419
+ gs=2 + self.num_key_value_groups,
420
+ d=self.head_dim,
421
+ )
422
+
423
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
424
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
425
+ key_states = qkv_states[..., -2, :]
426
+ value_states = qkv_states[..., -1, :]
427
+
428
+ query_states = query_states.transpose(1, 2)
429
+ key_states = key_states.transpose(1, 2)
430
+ value_states = value_states.transpose(1, 2)
431
+
432
+ cos, sin = self.rotary_emb(value_states, position_ids)
433
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
434
+
435
+ if past_key_value is not None:
436
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
437
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
438
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
439
+
440
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout
441
+ # [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
442
+ # to be able to avoid many of these transpose/reshape/view.
443
+ query_states = query_states.transpose(1, 2)
444
+ key_states = key_states.transpose(1, 2)
445
+ value_states = value_states.transpose(1, 2)
446
+
447
+ # dropout_rate = self.attention_dropout if self.training else 0.0
448
+ dropout_rate = 0.0
449
+
450
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
451
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
452
+ # cast them back in the correct dtype just to be sure everything works as expected.
453
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
454
+ # in fp32. (InternLM2RMSNorm handles it correctly)
455
+
456
+ input_dtype = query_states.dtype
457
+ if input_dtype == torch.float32:
458
+ if torch.is_autocast_enabled():
459
+ target_dtype = torch.get_autocast_gpu_dtype()
460
+ # Handle the case where the model is quantized
461
+ elif hasattr(self.config, "_pre_quantization_dtype"):
462
+ target_dtype = self.config._pre_quantization_dtype
463
+ else:
464
+ target_dtype = self.wqkv.weight.dtype
465
+
466
+ logger.warning_once(
467
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
468
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
469
+ f" {target_dtype}."
470
+ )
471
+
472
+ query_states = query_states.to(target_dtype)
473
+ key_states = key_states.to(target_dtype)
474
+ value_states = value_states.to(target_dtype)
475
+
476
+ attn_output = self._flash_attention_forward(
477
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
478
+ )
479
+
480
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
481
+ attn_output = self.wo(attn_output)
482
+
483
+ if not output_attentions:
484
+ attn_weights = None
485
+
486
+ return attn_output, attn_weights, past_key_value # pylint: disable=E0606
487
+
488
+ def _flash_attention_forward(
489
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
490
+ ):
491
+ """
492
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
493
+ first unpad the input, then computes the attention scores and pad the final attention scores.
494
+
495
+ Args:
496
+ query_states (`torch.Tensor`):
497
+ Input query states to be passed to Flash Attention API
498
+ key_states (`torch.Tensor`):
499
+ Input key states to be passed to Flash Attention API
500
+ value_states (`torch.Tensor`):
501
+ Input value states to be passed to Flash Attention API
502
+ attention_mask (`torch.Tensor`):
503
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
504
+ position of padding tokens and 1 for the position of non-padding tokens.
505
+ dropout (`float`):
506
+ Attention dropout
507
+ softmax_scale (`float`, *optional*):
508
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
509
+ """
510
+ if not self._flash_attn_uses_top_left_mask:
511
+ causal = self.is_causal
512
+ else:
513
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1.
514
+ # For details, please see the comment in InternLM2FlashAttention2 __init__.
515
+ causal = self.is_causal and query_length != 1
516
+
517
+ # Contains at least one padding token in the sequence
518
+ if attention_mask is not None:
519
+ batch_size = query_states.shape[0]
520
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
521
+ query_states, key_states, value_states, attention_mask, query_length
522
+ )
523
+
524
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
525
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
526
+
527
+ attn_output_unpad = flash_attn_varlen_func( # pylint: disable=E0606
528
+ query_states,
529
+ key_states,
530
+ value_states,
531
+ cu_seqlens_q=cu_seqlens_q,
532
+ cu_seqlens_k=cu_seqlens_k,
533
+ max_seqlen_q=max_seqlen_in_batch_q,
534
+ max_seqlen_k=max_seqlen_in_batch_k,
535
+ dropout_p=dropout,
536
+ softmax_scale=softmax_scale,
537
+ causal=causal,
538
+ )
539
+
540
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) # pylint: disable=E0606
541
+ else:
542
+ attn_output = flash_attn_func( # pylint: disable=E0606
543
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
544
+ )
545
+
546
+ return attn_output
547
+
548
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
549
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
550
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
551
+
552
+ key_layer = index_first_axis( # pylint: disable=E0606
553
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
554
+ )
555
+ value_layer = index_first_axis( # pylint: disable=E0606
556
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
557
+ )
558
+ if query_length == kv_seq_len:
559
+ query_layer = index_first_axis( # pylint: disable=E0606
560
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
561
+ )
562
+ cu_seqlens_q = cu_seqlens_k
563
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
564
+ indices_q = indices_k
565
+ elif query_length == 1:
566
+ max_seqlen_in_batch_q = 1
567
+ cu_seqlens_q = torch.arange(
568
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
569
+ ) # There is a memcpy here, that is very bad.
570
+ indices_q = cu_seqlens_q[:-1]
571
+ query_layer = query_layer.squeeze(1)
572
+ else:
573
+ # The -q_len: slice assumes left padding.
574
+ attention_mask = attention_mask[:, -query_length:]
575
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( # pylint: disable=E0606
576
+ query_layer, attention_mask
577
+ )
578
+
579
+ return (
580
+ query_layer,
581
+ key_layer,
582
+ value_layer,
583
+ indices_q,
584
+ (cu_seqlens_q, cu_seqlens_k),
585
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
586
+ )
587
+
588
+
589
+ # Copied from transformers.models.llama.modeling_llama.LllamaSdpaAttention with Llama->InternLM2
590
+ class InternLM2SdpaAttention(InternLM2Attention):
591
+ """
592
+ InternLM2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
593
+ `InternLM2Attention` as the weights of the module stays untouched. The only changes are on the forward pass
594
+ to adapt to SDPA API.
595
+ """
596
+
597
+ # Adapted from InternLM2Attention.forward
598
+ def forward(
599
+ self,
600
+ hidden_states: torch.Tensor,
601
+ attention_mask: Optional[torch.Tensor] = None,
602
+ position_ids: Optional[torch.LongTensor] = None,
603
+ past_key_value: Optional[Cache] = None,
604
+ output_attentions: bool = False,
605
+ use_cache: bool = False,
606
+ cache_position: Optional[torch.LongTensor] = None,
607
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
608
+ if output_attentions:
609
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"`
610
+ # once this is implemented.
611
+ logger.warning_once(
612
+ "InternLM2Model uses InternLM2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` "
613
+ "does not support `output_attentions=True`. Falling back to the manual attention implementation, "
614
+ "but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. "
615
+ 'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
616
+ )
617
+ return super().forward(
618
+ hidden_states=hidden_states,
619
+ attention_mask=attention_mask,
620
+ position_ids=position_ids,
621
+ past_key_value=past_key_value,
622
+ output_attentions=output_attentions,
623
+ use_cache=use_cache,
624
+ cache_position=cache_position,
625
+ )
626
+
627
+ bsz, q_len, _ = hidden_states.size()
628
+
629
+ qkv_states = self.wqkv(hidden_states)
630
+
631
+ qkv_states = rearrange(
632
+ qkv_states,
633
+ "b q (h gs d) -> b q h gs d",
634
+ gs=2 + self.num_key_value_groups,
635
+ d=self.head_dim,
636
+ )
637
+
638
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
639
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
640
+ key_states = qkv_states[..., -2, :]
641
+ value_states = qkv_states[..., -1, :]
642
+
643
+ query_states = query_states.transpose(1, 2)
644
+ key_states = key_states.transpose(1, 2)
645
+ value_states = value_states.transpose(1, 2)
646
+
647
+ cos, sin = self.rotary_emb(value_states, position_ids)
648
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
649
+
650
+ if past_key_value is not None:
651
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
652
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
653
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
654
+
655
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
656
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
657
+
658
+ causal_mask = attention_mask
659
+ if attention_mask is not None:
660
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
661
+
662
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with
663
+ # custom attn_mask, Reference: https://github.com/pytorch/pytorch/issues/112577.
664
+ if query_states.device.type == "cuda" and causal_mask is not None:
665
+ query_states = query_states.contiguous()
666
+ key_states = key_states.contiguous()
667
+ value_states = value_states.contiguous()
668
+
669
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of
670
+ # an inline conditional assignment in SDPA to support both torch.compile's dynamic shapes and full graph
671
+ # options. An inline conditional prevents dynamic shapes from compiling.
672
+ is_causal = bool(causal_mask is None and q_len > 1)
673
+
674
+ attn_output = torch.nn.functional.scaled_dot_product_attention( # pylint: disable=E1102
675
+ query_states,
676
+ key_states,
677
+ value_states,
678
+ attn_mask=causal_mask,
679
+ dropout_p=0.0,
680
+ is_causal=is_causal,
681
+ )
682
+
683
+ attn_output = attn_output.transpose(1, 2).contiguous()
684
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
685
+
686
+ attn_output = self.wo(attn_output)
687
+
688
+ return attn_output, None, past_key_value
689
+
690
+
691
+ INTERNLM2_ATTENTION_CLASSES = {
692
+ "eager": InternLM2Attention,
693
+ "flash_attention_2": InternLM2FlashAttention2,
694
+ "sdpa": InternLM2SdpaAttention,
695
+ }
696
+
697
+
698
+ # Modified from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->InternLM2
699
+ class InternLM2DecoderLayer(nn.Module):
700
+ """InternLM2 Decoder Layer. This module is a single layer of the InternLM2 model."""
701
+
702
+ def __init__(self, config: InternLM2Config, layer_idx: int):
703
+ super().__init__()
704
+ self.hidden_size = config.hidden_size
705
+ self.layer_idx = layer_idx
706
+
707
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config, layer_idx=layer_idx)
708
+
709
+ self.feed_forward = InternLM2MLP(config)
710
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
711
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
712
+
713
+ def forward(
714
+ self,
715
+ hidden_states: torch.Tensor,
716
+ attention_mask: Optional[torch.Tensor] = None,
717
+ position_ids: Optional[torch.LongTensor] = None,
718
+ past_key_value: Optional[Cache] = None,
719
+ output_attentions: Optional[bool] = False,
720
+ use_cache: Optional[bool] = False,
721
+ cache_position: Optional[torch.LongTensor] = None,
722
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
723
+ """
724
+ Args:
725
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
726
+ attention_mask (`torch.FloatTensor`, *optional*):
727
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
728
+ query_sequence_length, key_sequence_length)` if default attention is used.
729
+ output_attentions (`bool`, *optional*):
730
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
731
+ returned tensors for more detail.
732
+ use_cache (`bool`, *optional*):
733
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
734
+ (see `past_key_values`).
735
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
736
+ """
737
+ residual = hidden_states
738
+
739
+ hidden_states = self.attention_norm(hidden_states)
740
+
741
+ # Self Attention
742
+ hidden_states, self_attn_weights, present_key_value = self.attention(
743
+ hidden_states=hidden_states,
744
+ attention_mask=attention_mask,
745
+ position_ids=position_ids,
746
+ past_key_value=past_key_value,
747
+ output_attentions=output_attentions,
748
+ use_cache=use_cache,
749
+ cache_position=cache_position,
750
+ )
751
+ hidden_states = residual + hidden_states
752
+
753
+ # Fully Connected
754
+ residual = hidden_states
755
+ hidden_states = self.ffn_norm(hidden_states)
756
+ hidden_states = self.feed_forward(hidden_states)
757
+ hidden_states = residual + hidden_states
758
+
759
+ outputs = (hidden_states,)
760
+
761
+ if output_attentions:
762
+ outputs += (self_attn_weights,)
763
+
764
+ if use_cache:
765
+ outputs += (present_key_value,)
766
+
767
+ return outputs
768
+
769
+
770
+ InternLM2_START_DOCSTRING = r"""
771
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
772
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
773
+ etc.)
774
+
775
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
776
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
777
+ and behavior.
778
+
779
+ Parameters:
780
+ config ([`InternLM2Config`]):
781
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
782
+ load the weights associated with the model, only the configuration. Check out the
783
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
784
+ """
785
+
786
+
787
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
788
+ @add_start_docstrings(
789
+ "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
790
+ InternLM2_START_DOCSTRING,
791
+ )
792
+ class InternLM2PreTrainedModel(PreTrainedModel):
793
+ """
794
+ InternLM2 pretraiend model's base class.
795
+ """
796
+
797
+ config_class = InternLM2Config
798
+ base_model_prefix = "model"
799
+ supports_gradient_checkpointing = True
800
+ _no_split_modules = ["InternLM2DecoderLayer"]
801
+ _skip_keys_device_placement = ["past_key_values"]
802
+ _supports_flash_attn_2 = True
803
+ _supports_sdpa = True
804
+ _supports_cache_class = True
805
+ _supports_quantized_cache = True
806
+ _supports_static_cache = True
807
+
808
+ def _init_weights(self, module):
809
+ std = self.config.initializer_range
810
+ if isinstance(module, nn.Linear):
811
+ module.weight.data.normal_(mean=0.0, std=std)
812
+ if module.bias is not None:
813
+ module.bias.data.zero_()
814
+ elif isinstance(module, nn.Embedding):
815
+ module.weight.data.normal_(mean=0.0, std=std)
816
+ if module.padding_idx is not None:
817
+ module.weight.data[module.padding_idx].zero_()
818
+
819
+
820
+ InternLM2_INPUTS_DOCSTRING = r"""
821
+ Args:
822
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
823
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
824
+ it.
825
+
826
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
827
+ [`PreTrainedTokenizer.__call__`] for details.
828
+
829
+ [What are input IDs?](../glossary#input-ids)
830
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
831
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
832
+
833
+ - 1 for tokens that are **not masked**,
834
+ - 0 for tokens that are **masked**.
835
+
836
+ [What are attention masks?](../glossary#attention-mask)
837
+
838
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
839
+ [`PreTrainedTokenizer.__call__`] for details.
840
+
841
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
842
+ `past_key_values`).
843
+
844
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
845
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
846
+ information on the default strategy.
847
+
848
+ - 1 indicates the head is **not masked**,
849
+ - 0 indicates the head is **masked**.
850
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
851
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
852
+ config.n_positions - 1]`.
853
+
854
+ [What are position IDs?](../glossary#position-ids)
855
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
856
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
857
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
858
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
859
+
860
+ Two formats are allowed:
861
+ - a [`~cache_utils.Cache`] instance;
862
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
863
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
864
+ cache format.
865
+
866
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
867
+ legacy cache format will be returned.
868
+
869
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
870
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
871
+ of shape `(batch_size, sequence_length)`.
872
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
873
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
874
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
875
+ model's internal embedding lookup matrix.
876
+ use_cache (`bool`, *optional*):
877
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
878
+ `past_key_values`).
879
+ output_attentions (`bool`, *optional*):
880
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
881
+ tensors for more detail.
882
+ output_hidden_states (`bool`, *optional*):
883
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
884
+ more detail.
885
+ return_dict (`bool`, *optional*):
886
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
887
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
888
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
889
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
890
+ the complete sequence length.
891
+ """
892
+
893
+
894
+ # Modified from transformers.models.llama.modeling_llama.LlamaModel with Llama->InternLM2
895
+ @add_start_docstrings(
896
+ "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
897
+ InternLM2_START_DOCSTRING,
898
+ )
899
+ class InternLM2Model(InternLM2PreTrainedModel):
900
+ """
901
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
902
+
903
+ Args:
904
+ config: InternLM2Config
905
+ """
906
+
907
+ _auto_class = "AutoModel"
908
+
909
+ def __init__(self, config: InternLM2Config):
910
+ super().__init__(config)
911
+ self.padding_idx = config.pad_token_id
912
+ self.vocab_size = config.vocab_size
913
+ self.config = config
914
+
915
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
916
+
917
+ self.layers = nn.ModuleList(
918
+ [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
919
+ )
920
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
921
+
922
+ self.gradient_checkpointing = False
923
+ # Initialize weights and apply final processing
924
+ self.post_init()
925
+
926
+ def get_input_embeddings(self):
927
+ return self.tok_embeddings
928
+
929
+ def set_input_embeddings(self, value):
930
+ self.tok_embeddings = value
931
+
932
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
933
+ def forward(
934
+ self,
935
+ input_ids: torch.LongTensor = None,
936
+ attention_mask: Optional[torch.Tensor] = None,
937
+ position_ids: Optional[torch.LongTensor] = None,
938
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
939
+ inputs_embeds: Optional[torch.FloatTensor] = None,
940
+ use_cache: Optional[bool] = None,
941
+ output_attentions: Optional[bool] = None,
942
+ output_hidden_states: Optional[bool] = None,
943
+ return_dict: Optional[bool] = None,
944
+ cache_position: Optional[torch.LongTensor] = None,
945
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
946
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
947
+ output_hidden_states = (
948
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
949
+ )
950
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
951
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
952
+
953
+ if (input_ids is None) ^ (inputs_embeds is not None):
954
+ raise ValueError(
955
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
956
+ )
957
+
958
+ if self.gradient_checkpointing and self.training and use_cache:
959
+ logger.warning_once(
960
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
961
+ )
962
+ use_cache = False
963
+
964
+ if inputs_embeds is None:
965
+ inputs_embeds = self.tok_embeddings(input_ids)
966
+
967
+ return_legacy_cache = False
968
+ if use_cache and not isinstance(past_key_values, Cache): # kept for BC (non `Cache` `past_key_values` inputs)
969
+ return_legacy_cache = True
970
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
971
+
972
+ if cache_position is None:
973
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
974
+ cache_position = torch.arange(
975
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
976
+ )
977
+ if position_ids is None:
978
+ position_ids = cache_position.unsqueeze(0)
979
+
980
+ causal_mask = self._update_causal_mask(
981
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
982
+ )
983
+
984
+ # embed positions
985
+ hidden_states = inputs_embeds
986
+
987
+ # decoder layers
988
+ all_hidden_states = () if output_hidden_states else None
989
+ all_self_attns = () if output_attentions else None
990
+ next_decoder_cache = None
991
+
992
+ for decoder_layer in self.layers:
993
+ if output_hidden_states:
994
+ all_hidden_states += (hidden_states,)
995
+
996
+ if self.gradient_checkpointing and self.training:
997
+ layer_outputs = self._gradient_checkpointing_func(
998
+ decoder_layer.__call__,
999
+ hidden_states,
1000
+ causal_mask,
1001
+ position_ids,
1002
+ past_key_values,
1003
+ output_attentions,
1004
+ use_cache,
1005
+ cache_position,
1006
+ )
1007
+ else:
1008
+ layer_outputs = decoder_layer(
1009
+ hidden_states,
1010
+ attention_mask=causal_mask,
1011
+ position_ids=position_ids,
1012
+ past_key_value=past_key_values,
1013
+ output_attentions=output_attentions,
1014
+ use_cache=use_cache,
1015
+ cache_position=cache_position,
1016
+ )
1017
+
1018
+ hidden_states = layer_outputs[0]
1019
+
1020
+ if use_cache:
1021
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1022
+
1023
+ if output_attentions:
1024
+ all_self_attns += (layer_outputs[1],)
1025
+
1026
+ hidden_states = self.norm(hidden_states)
1027
+
1028
+ # add hidden states from the last decoder layer
1029
+ if output_hidden_states:
1030
+ all_hidden_states += (hidden_states,)
1031
+
1032
+ next_cache = next_decoder_cache if use_cache else None
1033
+ if return_legacy_cache:
1034
+ next_cache = next_cache.to_legacy_cache()
1035
+
1036
+ if not return_dict:
1037
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1038
+ return BaseModelOutputWithPast(
1039
+ last_hidden_state=hidden_states,
1040
+ past_key_values=next_cache,
1041
+ hidden_states=all_hidden_states,
1042
+ attentions=all_self_attns,
1043
+ )
1044
+
1045
+ def _update_causal_mask(
1046
+ self,
1047
+ attention_mask: torch.Tensor,
1048
+ input_tensor: torch.Tensor,
1049
+ cache_position: torch.Tensor,
1050
+ past_key_values: Cache,
1051
+ output_attentions: bool,
1052
+ ):
1053
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length
1054
+ # even when the static KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at
1055
+ # each decode steps due to the dynamic shapes. (`recording cudagraph tree for symint key 13`, etc.), which is
1056
+ # VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using `fullgraph=True`.
1057
+ # See more context in https://github.com/huggingface/transformers/pull/29114
1058
+
1059
+ if self.config.attn_implementation == "flash_attention_2":
1060
+ if attention_mask is not None and 0.0 in attention_mask:
1061
+ return attention_mask
1062
+ return None
1063
+
1064
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1065
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1066
+ # to infer the attention mask.
1067
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1068
+ using_static_cache = isinstance(past_key_values, StaticCache)
1069
+
1070
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1071
+ if self.config.attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
1072
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1073
+ attention_mask,
1074
+ inputs_embeds=input_tensor,
1075
+ past_key_values_length=past_seen_tokens,
1076
+ is_training=self.training,
1077
+ ):
1078
+ return None
1079
+
1080
+ dtype, device = input_tensor.dtype, input_tensor.device
1081
+ min_dtype = torch.finfo(dtype).min
1082
+ sequence_length = input_tensor.shape[1]
1083
+ if using_static_cache:
1084
+ target_length = past_key_values.get_max_length()
1085
+ else:
1086
+ target_length = (
1087
+ attention_mask.shape[-1]
1088
+ if isinstance(attention_mask, torch.Tensor)
1089
+ else past_seen_tokens + sequence_length + 1
1090
+ )
1091
+
1092
+ if attention_mask is not None and attention_mask.dim() == 4:
1093
+ # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
1094
+ if attention_mask.max() != 0:
1095
+ raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
1096
+ causal_mask = attention_mask
1097
+ else:
1098
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
1099
+ if sequence_length != 1:
1100
+ if support_bf16_triu or dtype == torch.float32:
1101
+ causal_mask = torch.triu(causal_mask, diagonal=1)
1102
+ else:
1103
+ triu_mask = torch.triu(torch.ones(causal_mask.size(), device=device), diagonal=1).bool()
1104
+ causal_mask.masked_fill_(~triu_mask, 0)
1105
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
1106
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
1107
+ if attention_mask is not None:
1108
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
1109
+ mask_length = attention_mask.shape[-1]
1110
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
1111
+ padding_mask = padding_mask == 0
1112
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
1113
+ padding_mask, min_dtype
1114
+ )
1115
+ if (
1116
+ self.config.attn_implementation == "sdpa"
1117
+ and attention_mask is not None
1118
+ and attention_mask.device.type == "cuda"
1119
+ and not output_attentions
1120
+ ):
1121
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1122
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1123
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1124
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) # pylint: disable=E1120
1125
+
1126
+ return causal_mask
1127
+
1128
+
1129
+ # Modified from transformers.models.llama.modeling_llama.LlamaForCausalLM
1130
+ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
1131
+ """Causal language model (CLM) for InternLM2."""
1132
+
1133
+ _auto_class = "AutoModelForCausalLM"
1134
+ _tied_weights_keys = ["output.weight"]
1135
+
1136
+ def __init__(self, config):
1137
+ super().__init__(config)
1138
+ self.model = InternLM2Model(config)
1139
+ self.vocab_size = config.vocab_size
1140
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1141
+
1142
+ # Initialize weights and apply final processing
1143
+ self.post_init()
1144
+
1145
+ def get_input_embeddings(self):
1146
+ return self.model.tok_embeddings
1147
+
1148
+ def set_input_embeddings(self, value):
1149
+ self.model.tok_embeddings = value
1150
+
1151
+ def get_output_embeddings(self):
1152
+ return self.output
1153
+
1154
+ def set_output_embeddings(self, new_embeddings):
1155
+ self.output = new_embeddings
1156
+
1157
+ def set_decoder(self, decoder):
1158
+ self.model = decoder
1159
+
1160
+ def get_decoder(self):
1161
+ return self.model
1162
+
1163
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1164
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1165
+ def forward(
1166
+ self,
1167
+ input_ids: torch.LongTensor = None,
1168
+ attention_mask: Optional[torch.Tensor] = None,
1169
+ position_ids: Optional[torch.LongTensor] = None,
1170
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1171
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1172
+ labels: Optional[torch.LongTensor] = None,
1173
+ use_cache: Optional[bool] = None,
1174
+ output_attentions: Optional[bool] = None,
1175
+ output_hidden_states: Optional[bool] = None,
1176
+ return_dict: Optional[bool] = None,
1177
+ cache_position: Optional[torch.LongTensor] = None,
1178
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1179
+ r"""
1180
+ Args:
1181
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1182
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1183
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1184
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1185
+
1186
+ Returns:
1187
+
1188
+ Example:
1189
+
1190
+ ```python
1191
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1192
+
1193
+ >>> model = InternLM2ForCausalLM.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
1194
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
1195
+
1196
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1197
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1198
+
1199
+ >>> # Generate
1200
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1201
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1202
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1203
+ ```"""
1204
+
1205
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1206
+ output_hidden_states = (
1207
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1208
+ )
1209
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1210
+
1211
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1212
+ outputs = self.model(
1213
+ input_ids=input_ids,
1214
+ attention_mask=attention_mask,
1215
+ position_ids=position_ids,
1216
+ past_key_values=past_key_values,
1217
+ inputs_embeds=inputs_embeds,
1218
+ use_cache=use_cache,
1219
+ output_attentions=output_attentions,
1220
+ output_hidden_states=output_hidden_states,
1221
+ return_dict=return_dict,
1222
+ cache_position=cache_position,
1223
+ )
1224
+
1225
+ hidden_states = outputs[0]
1226
+ if self.config.pretraining_tp > 1:
1227
+ output_slices = self.output.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1228
+ logits = [
1229
+ F.linear(hidden_states, output_slices[i]) # pylint: disable=not-callable
1230
+ for i in range(self.config.pretraining_tp)
1231
+ ]
1232
+ logits = torch.cat(logits, dim=-1)
1233
+ else:
1234
+ logits = self.output(hidden_states)
1235
+ logits = logits.float()
1236
+
1237
+ loss = None
1238
+ if labels is not None:
1239
+ # Shift so that tokens < n predict n
1240
+ shift_logits = logits[..., :-1, :].contiguous()
1241
+ shift_labels = labels[..., 1:].contiguous()
1242
+ # Flatten the tokens
1243
+ loss_fct = CrossEntropyLoss()
1244
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1245
+ shift_labels = shift_labels.view(-1)
1246
+ # Enable model parallelism
1247
+ shift_labels = shift_labels.to(shift_logits.device)
1248
+ loss = loss_fct(shift_logits, shift_labels)
1249
+
1250
+ if not return_dict:
1251
+ output = (logits,) + outputs[1:]
1252
+ return (loss,) + output if loss is not None else output
1253
+
1254
+ return CausalLMOutputWithPast(
1255
+ loss=loss,
1256
+ logits=logits,
1257
+ past_key_values=outputs.past_key_values,
1258
+ hidden_states=outputs.hidden_states,
1259
+ attentions=outputs.attentions,
1260
+ )
1261
+
1262
+ def prepare_inputs_for_generation(
1263
+ self,
1264
+ input_ids,
1265
+ past_key_values=None,
1266
+ attention_mask=None,
1267
+ inputs_embeds=None,
1268
+ cache_position=None,
1269
+ use_cache=True,
1270
+ **kwargs,
1271
+ ):
1272
+ past_length = 0
1273
+ if past_key_values is not None:
1274
+ if isinstance(past_key_values, Cache):
1275
+ past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
1276
+ max_cache_length = (
1277
+ torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
1278
+ if past_key_values.get_max_length() is not None
1279
+ else None
1280
+ )
1281
+ cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
1282
+ # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
1283
+ else:
1284
+ cache_length = past_length = past_key_values[0][0].shape[2]
1285
+ max_cache_length = None
1286
+
1287
+ # Keep only the unprocessed tokens:
1288
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1289
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
1290
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1291
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1292
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1293
+ # input_ids based on the past_length.
1294
+ elif past_length < input_ids.shape[1]:
1295
+ input_ids = input_ids[:, past_length:]
1296
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1297
+
1298
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1299
+ if (
1300
+ max_cache_length is not None
1301
+ and attention_mask is not None
1302
+ and cache_length + input_ids.shape[1] > max_cache_length
1303
+ ):
1304
+ attention_mask = attention_mask[:, -max_cache_length:] # pylint: disable=E1130
1305
+
1306
+ position_ids = kwargs.get("position_ids", None)
1307
+ if attention_mask is not None and position_ids is None:
1308
+ # create position_ids on the fly for batch generation
1309
+ position_ids = attention_mask.long().cumsum(-1) - 1
1310
+ position_ids.masked_fill_(attention_mask == 0, 1)
1311
+ if past_key_values:
1312
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1313
+
1314
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1315
+ if inputs_embeds is not None and past_key_values is None:
1316
+ model_inputs = {"inputs_embeds": inputs_embeds}
1317
+ else:
1318
+ # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
1319
+ # recompiles graphs as the stride of the inputs is a guard.
1320
+ # Ref: https://github.com/huggingface/transformers/pull/29114
1321
+ # TODO: use `next_tokens` directly instead.
1322
+ model_inputs = {"input_ids": input_ids.contiguous()}
1323
+
1324
+ input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
1325
+ if cache_position is None:
1326
+ cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
1327
+ elif use_cache:
1328
+ cache_position = cache_position[-input_length:]
1329
+
1330
+ model_inputs.update(
1331
+ {
1332
+ "position_ids": position_ids,
1333
+ "cache_position": cache_position,
1334
+ "past_key_values": past_key_values,
1335
+ "use_cache": use_cache,
1336
+ "attention_mask": attention_mask,
1337
+ }
1338
+ )
1339
+ return model_inputs
1340
+
1341
+ @staticmethod
1342
+ def _reorder_cache(past_key_values, beam_idx):
1343
+ reordered_past = ()
1344
+ for layer_past in past_key_values:
1345
+ reordered_past += (
1346
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1347
+ )
1348
+ return reordered_past
1349
+
1350
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, meta_instruction=""):
1351
+ if history is None:
1352
+ history = []
1353
+ if tokenizer.add_bos_token:
1354
+ prompt = ""
1355
+ else:
1356
+ prompt = tokenizer.bos_token
1357
+ if meta_instruction:
1358
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
1359
+ for record in history:
1360
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
1361
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
1362
+ return tokenizer([prompt], return_tensors="pt")
1363
+
1364
+ @torch.no_grad()
1365
+ def chat(
1366
+ self,
1367
+ tokenizer,
1368
+ query: str,
1369
+ history: Optional[List[Tuple[str, str]]] = None,
1370
+ streamer: Optional[BaseStreamer] = None,
1371
+ max_new_tokens: int = 1024,
1372
+ do_sample: bool = True,
1373
+ temperature: float = 0.8,
1374
+ top_p: float = 0.8,
1375
+ meta_instruction: str = "You are an AI assistant whose name is InternLM (书生·浦语).\n"
1376
+ "- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory "
1377
+ "(上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
1378
+ "- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such "
1379
+ "as English and 中文.",
1380
+ **kwargs,
1381
+ ):
1382
+ if history is None:
1383
+ history = []
1384
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1385
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1386
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1387
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(["<|im_end|>"])[0]]
1388
+ outputs = self.generate(
1389
+ **inputs,
1390
+ streamer=streamer,
1391
+ max_new_tokens=max_new_tokens,
1392
+ do_sample=do_sample,
1393
+ temperature=temperature,
1394
+ top_p=top_p,
1395
+ eos_token_id=eos_token_id,
1396
+ **kwargs,
1397
+ )
1398
+ outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
1399
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1400
+ response = response.split("<|im_end|>")[0]
1401
+ history = history + [(query, response)]
1402
+ return response, history
1403
+
1404
+ @torch.no_grad()
1405
+ def stream_chat(
1406
+ self,
1407
+ tokenizer,
1408
+ query: str,
1409
+ history: List[Tuple[str, str]] = None,
1410
+ max_new_tokens: int = 1024,
1411
+ do_sample: bool = True,
1412
+ temperature: float = 0.8,
1413
+ top_p: float = 0.8,
1414
+ **kwargs,
1415
+ ):
1416
+ if history is None:
1417
+ history = []
1418
+ """
1419
+ Return a generator in format: (response, history)
1420
+ Eg.
1421
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1422
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1423
+ """
1424
+ if BaseStreamer is None:
1425
+ raise ModuleNotFoundError(
1426
+ "The version of `transformers` is too low. Please make sure "
1427
+ "that you have installed `transformers>=4.28.0`."
1428
+ )
1429
+
1430
+ response_queue = queue.Queue(maxsize=20)
1431
+
1432
+ class ChatStreamer(BaseStreamer):
1433
+ """
1434
+ Streamer used in generate to print words one by one.
1435
+ """
1436
+
1437
+ def __init__(self, tokenizer) -> None:
1438
+ super().__init__()
1439
+ self.tokenizer = tokenizer
1440
+ self.queue = response_queue
1441
+ self.query = query
1442
+ self.history = history
1443
+ self.response = ""
1444
+ self.cache = []
1445
+ self.received_inputs = False
1446
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1447
+
1448
+ def put(self, value):
1449
+ if len(value.shape) > 1 and value.shape[0] > 1:
1450
+ raise ValueError("ChatStreamer only supports batch size 1")
1451
+ elif len(value.shape) > 1:
1452
+ value = value[0]
1453
+
1454
+ if not self.received_inputs:
1455
+ # The first received value is input_ids, ignore here
1456
+ self.received_inputs = True
1457
+ return
1458
+
1459
+ self.cache.extend(value.tolist())
1460
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1461
+ if token.strip() != "<|im_end|>":
1462
+ self.response = self.response + token
1463
+ history = self.history + [(self.query, self.response)]
1464
+ self.queue.put((self.response, history))
1465
+ self.cache = []
1466
+ else:
1467
+ self.end()
1468
+
1469
+ def end(self):
1470
+ self.queue.put(None)
1471
+
1472
+ def stream_producer():
1473
+ return self.chat(
1474
+ tokenizer=tokenizer,
1475
+ query=query,
1476
+ streamer=ChatStreamer(tokenizer=tokenizer),
1477
+ history=history,
1478
+ max_new_tokens=max_new_tokens,
1479
+ do_sample=do_sample,
1480
+ temperature=temperature,
1481
+ top_p=top_p,
1482
+ **kwargs,
1483
+ )
1484
+
1485
+ def consumer():
1486
+ producer = threading.Thread(target=stream_producer)
1487
+ producer.start()
1488
+ while True:
1489
+ res = response_queue.get()
1490
+ if res is None:
1491
+ return
1492
+ yield res
1493
+
1494
+ return consumer()
1495
+
1496
+
1497
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1498
+ @add_start_docstrings(
1499
+ """
1500
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1501
+
1502
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1503
+ (e.g. GPT-2) do.
1504
+
1505
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1506
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1507
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1508
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1509
+ each row of the batch).
1510
+ """,
1511
+ InternLM2_START_DOCSTRING,
1512
+ )
1513
+ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1514
+ """Sequence Classification Head for InternLM2 Model."""
1515
+
1516
+ def __init__(self, config):
1517
+ super().__init__(config)
1518
+ self.num_labels = config.num_labels
1519
+ self.model = InternLM2Model(config)
1520
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1521
+
1522
+ # Initialize weights and apply final processing
1523
+ self.post_init()
1524
+
1525
+ def get_input_embeddings(self):
1526
+ return self.model.tok_embeddings
1527
+
1528
+ def set_input_embeddings(self, value):
1529
+ self.model.tok_embeddings = value
1530
+
1531
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1532
+ def forward(
1533
+ self,
1534
+ input_ids: torch.LongTensor = None,
1535
+ attention_mask: Optional[torch.Tensor] = None,
1536
+ position_ids: Optional[torch.LongTensor] = None,
1537
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1538
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1539
+ labels: Optional[torch.LongTensor] = None,
1540
+ use_cache: Optional[bool] = None,
1541
+ output_attentions: Optional[bool] = None,
1542
+ output_hidden_states: Optional[bool] = None,
1543
+ return_dict: Optional[bool] = None,
1544
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1545
+ r"""
1546
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1547
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1548
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1549
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1550
+ """
1551
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1552
+
1553
+ transformer_outputs = self.model(
1554
+ input_ids,
1555
+ attention_mask=attention_mask,
1556
+ position_ids=position_ids,
1557
+ past_key_values=past_key_values,
1558
+ inputs_embeds=inputs_embeds,
1559
+ use_cache=use_cache,
1560
+ output_attentions=output_attentions,
1561
+ output_hidden_states=output_hidden_states,
1562
+ return_dict=return_dict,
1563
+ )
1564
+ hidden_states = transformer_outputs[0]
1565
+ logits = self.score(hidden_states)
1566
+
1567
+ if input_ids is not None:
1568
+ batch_size = input_ids.shape[0]
1569
+ else:
1570
+ batch_size = inputs_embeds.shape[0]
1571
+
1572
+ if self.config.pad_token_id is None and batch_size != 1:
1573
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1574
+ if self.config.pad_token_id is None:
1575
+ sequence_lengths = -1
1576
+ else:
1577
+ if input_ids is not None:
1578
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1579
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1580
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1581
+ sequence_lengths = sequence_lengths.to(logits.device)
1582
+ else:
1583
+ sequence_lengths = -1
1584
+
1585
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1586
+
1587
+ loss = None
1588
+ if labels is not None:
1589
+ labels = labels.to(logits.device)
1590
+ if self.config.problem_type is None:
1591
+ if self.num_labels == 1:
1592
+ self.config.problem_type = "regression"
1593
+ elif self.num_labels > 1 and (labels.dtype in (torch.long, torch.int)):
1594
+ self.config.problem_type = "single_label_classification"
1595
+ else:
1596
+ self.config.problem_type = "multi_label_classification"
1597
+
1598
+ if self.config.problem_type == "regression":
1599
+ loss_fct = MSELoss()
1600
+ if self.num_labels == 1:
1601
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1602
+ else:
1603
+ loss = loss_fct(pooled_logits, labels)
1604
+ elif self.config.problem_type == "single_label_classification":
1605
+ loss_fct = CrossEntropyLoss()
1606
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1607
+ elif self.config.problem_type == "multi_label_classification":
1608
+ loss_fct = BCEWithLogitsLoss()
1609
+ loss = loss_fct(pooled_logits, labels)
1610
+ if not return_dict:
1611
+ output = (pooled_logits,) + transformer_outputs[1:]
1612
+ return ((loss,) + output) if loss is not None else output
1613
+
1614
+ return SequenceClassifierOutputWithPast(
1615
+ loss=loss,
1616
+ logits=pooled_logits,
1617
+ past_key_values=transformer_outputs.past_key_values,
1618
+ hidden_states=transformer_outputs.hidden_states,
1619
+ attentions=transformer_outputs.attentions,
1620
+ )
1621
+
1622
+
1623
+ # Copied from transformers.models.llama.modeling_llama.LlamaForQuestionAnswering with Llama->InternLM2
1624
+ @add_start_docstrings(
1625
+ """
1626
+ The InternLM2 Model transformer with a span classification head on top for extractive question-answering tasks like
1627
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1628
+ """,
1629
+ InternLM2_START_DOCSTRING,
1630
+ )
1631
+ class InternLM2ForQuestionAnswering(InternLM2PreTrainedModel):
1632
+ """Question Answering model for InternLM2."""
1633
+
1634
+ base_model_prefix = "transformer"
1635
+
1636
+ def __init__(self, config):
1637
+ super().__init__(config)
1638
+ self.transformer = InternLM2Model(config)
1639
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1640
+
1641
+ # Initialize weights and apply final processing
1642
+ self.post_init()
1643
+
1644
+ def get_input_embeddings(self):
1645
+ return self.transformer.tok_embeddings
1646
+
1647
+ def set_input_embeddings(self, value):
1648
+ self.transformer.tok_embeddings = value
1649
+
1650
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1651
+ def forward(
1652
+ self,
1653
+ input_ids: Optional[torch.LongTensor] = None,
1654
+ attention_mask: Optional[torch.FloatTensor] = None,
1655
+ position_ids: Optional[torch.LongTensor] = None,
1656
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1657
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1658
+ start_positions: Optional[torch.LongTensor] = None,
1659
+ end_positions: Optional[torch.LongTensor] = None,
1660
+ output_attentions: Optional[bool] = None,
1661
+ output_hidden_states: Optional[bool] = None,
1662
+ return_dict: Optional[bool] = None,
1663
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1664
+ r"""
1665
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1666
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1667
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1668
+ are not taken into account for computing the loss.
1669
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1670
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1671
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1672
+ are not taken into account for computing the loss.
1673
+ """
1674
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1675
+
1676
+ outputs = self.transformer(
1677
+ input_ids,
1678
+ attention_mask=attention_mask,
1679
+ position_ids=position_ids,
1680
+ past_key_values=past_key_values,
1681
+ inputs_embeds=inputs_embeds,
1682
+ output_attentions=output_attentions,
1683
+ output_hidden_states=output_hidden_states,
1684
+ return_dict=return_dict,
1685
+ )
1686
+
1687
+ sequence_output = outputs[0]
1688
+
1689
+ logits = self.qa_outputs(sequence_output)
1690
+ start_logits, end_logits = logits.split(1, dim=-1)
1691
+ start_logits = start_logits.squeeze(-1).contiguous()
1692
+ end_logits = end_logits.squeeze(-1).contiguous()
1693
+
1694
+ total_loss = None
1695
+ if start_positions is not None and end_positions is not None:
1696
+ # If we are on multi-GPU, split add a dimension
1697
+ if len(start_positions.size()) > 1:
1698
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1699
+ if len(end_positions.size()) > 1:
1700
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1701
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1702
+ ignored_index = start_logits.size(1)
1703
+ start_positions = start_positions.clamp(0, ignored_index)
1704
+ end_positions = end_positions.clamp(0, ignored_index)
1705
+
1706
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1707
+ start_loss = loss_fct(start_logits, start_positions)
1708
+ end_loss = loss_fct(end_logits, end_positions)
1709
+ total_loss = (start_loss + end_loss) / 2
1710
+
1711
+ if not return_dict:
1712
+ output = (start_logits, end_logits) + outputs[2:]
1713
+ return ((total_loss,) + output) if total_loss is not None else output
1714
+
1715
+ return QuestionAnsweringModelOutput(
1716
+ loss=total_loss,
1717
+ start_logits=start_logits,
1718
+ end_logits=end_logits,
1719
+ hidden_states=outputs.hidden_states,
1720
+ attentions=outputs.attentions,
1721
+ )
1722
+
1723
+
1724
+ # Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->InternLM2
1725
+ @add_start_docstrings(
1726
+ """
1727
+ The InternLM2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
1728
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
1729
+ """,
1730
+ InternLM2_START_DOCSTRING,
1731
+ )
1732
+ class InternLM2ForTokenClassification(InternLM2PreTrainedModel):
1733
+ """Token classification model for InternLM2."""
1734
+
1735
+ def __init__(self, config):
1736
+ super().__init__(config)
1737
+ self.num_labels = config.num_labels
1738
+ self.model = InternLM2Model(config)
1739
+ if getattr(config, "classifier_dropout", None) is not None:
1740
+ classifier_dropout = config.classifier_dropout
1741
+ elif getattr(config, "hidden_dropout", None) is not None:
1742
+ classifier_dropout = config.hidden_dropout
1743
+ else:
1744
+ classifier_dropout = 0.1
1745
+ self.dropout = nn.Dropout(classifier_dropout)
1746
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
1747
+
1748
+ # Initialize weights and apply final processing
1749
+ self.post_init()
1750
+
1751
+ def get_input_embeddings(self):
1752
+ return self.model.tok_embeddings
1753
+
1754
+ def set_input_embeddings(self, value):
1755
+ self.model.tok_embeddings = value
1756
+
1757
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1758
+ def forward(
1759
+ self,
1760
+ input_ids: torch.LongTensor = None,
1761
+ attention_mask: Optional[torch.Tensor] = None,
1762
+ position_ids: Optional[torch.LongTensor] = None,
1763
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1764
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1765
+ labels: Optional[torch.LongTensor] = None,
1766
+ use_cache: Optional[bool] = None,
1767
+ output_attentions: Optional[bool] = None,
1768
+ output_hidden_states: Optional[bool] = None,
1769
+ return_dict: Optional[bool] = None,
1770
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1771
+ r"""
1772
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1773
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1774
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1775
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1776
+ """
1777
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1778
+
1779
+ outputs = self.model(
1780
+ input_ids,
1781
+ attention_mask=attention_mask,
1782
+ position_ids=position_ids,
1783
+ past_key_values=past_key_values,
1784
+ inputs_embeds=inputs_embeds,
1785
+ use_cache=use_cache,
1786
+ output_attentions=output_attentions,
1787
+ output_hidden_states=output_hidden_states,
1788
+ return_dict=return_dict,
1789
+ )
1790
+ sequence_output = outputs[0]
1791
+ sequence_output = self.dropout(sequence_output)
1792
+ logits = self.score(sequence_output)
1793
+
1794
+ loss = None
1795
+ if labels is not None:
1796
+ loss_fct = CrossEntropyLoss()
1797
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1798
+
1799
+ if not return_dict:
1800
+ output = (logits,) + outputs[2:]
1801
+ return ((loss,) + output) if loss is not None else output
1802
+
1803
+ return TokenClassifierOutput(
1804
+ loss=loss,
1805
+ logits=logits,
1806
+ hidden_states=outputs.hidden_states,
1807
+ attentions=outputs.attentions,
1808
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|action_start|>",
6
+ "<|action_end|>",
7
+ "<|interpreter|>",
8
+ "<|plugin|>"
9
+ ],
10
+ "bos_token": {
11
+ "content": "<s>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ },
17
+ "eos_token": {
18
+ "content": "</s>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "</s>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ },
31
+ "unk_token": {
32
+ "content": "<unk>",
33
+ "lstrip": false,
34
+ "normalized": false,
35
+ "rstrip": false,
36
+ "single_word": false
37
+ }
38
+ }
tokenization_internlm2.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """Tokenization classes for InternLM."""
19
+ import os
20
+ from shutil import copyfile
21
+ from typing import Any, Dict, List, Optional, Tuple
22
+
23
+ import sentencepiece as spm
24
+ from transformers.tokenization_utils import PreTrainedTokenizer
25
+ from transformers.utils import logging
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
30
+
31
+ PRETRAINED_VOCAB_FILES_MAP = {}
32
+
33
+
34
+ # Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
35
+ class InternLM2Tokenizer(PreTrainedTokenizer):
36
+ """
37
+ Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
38
+
39
+ Args:
40
+ vocab_file (`str`):
41
+ Path to the vocabulary file.
42
+ """
43
+
44
+ vocab_files_names = VOCAB_FILES_NAMES
45
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
46
+ model_input_names = ["input_ids", "attention_mask"]
47
+ _auto_class = "AutoTokenizer"
48
+
49
+ def __init__(
50
+ self,
51
+ vocab_file,
52
+ unk_token="<unk>",
53
+ bos_token="<s>",
54
+ eos_token="</s>",
55
+ pad_token="</s>",
56
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
57
+ add_bos_token=True,
58
+ add_eos_token=False,
59
+ decode_with_prefix_space=False,
60
+ clean_up_tokenization_spaces=False,
61
+ **kwargs,
62
+ ):
63
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
64
+ self.vocab_file = vocab_file
65
+ self.add_bos_token = add_bos_token
66
+ self.add_eos_token = add_eos_token
67
+ self.decode_with_prefix_space = decode_with_prefix_space
68
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
69
+ self.sp_model.Load(vocab_file)
70
+ self._no_prefix_space_tokens = None
71
+ super().__init__(
72
+ bos_token=bos_token,
73
+ eos_token=eos_token,
74
+ unk_token=unk_token,
75
+ pad_token=pad_token,
76
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
77
+ **kwargs,
78
+ )
79
+
80
+ @property
81
+ def no_prefix_space_tokens(self):
82
+ if self._no_prefix_space_tokens is None:
83
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
84
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
85
+ return self._no_prefix_space_tokens
86
+
87
+ @property
88
+ def vocab_size(self):
89
+ """Returns vocab size"""
90
+ return self.sp_model.get_piece_size()
91
+
92
+ @property
93
+ def bos_token_id(self) -> Optional[int]:
94
+ return self.sp_model.bos_id()
95
+
96
+ @property
97
+ def eos_token_id(self) -> Optional[int]:
98
+ return self.sp_model.eos_id()
99
+
100
+ def get_vocab(self):
101
+ """Returns vocab as a dict"""
102
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
103
+ vocab.update(self.added_tokens_encoder)
104
+ return vocab
105
+
106
+ def _tokenize(self, text):
107
+ """Returns a tokenized string."""
108
+ return self.sp_model.encode(text, out_type=str)
109
+
110
+ def _convert_token_to_id(self, token):
111
+ """Converts a token (str) in an id using the vocab."""
112
+ return self.sp_model.piece_to_id(token)
113
+
114
+ def _convert_id_to_token(self, index):
115
+ """Converts an index (integer) in a token (str) using the vocab."""
116
+ token = self.sp_model.IdToPiece(index)
117
+ return token
118
+
119
+ def _maybe_add_prefix_space(self, tokens, decoded):
120
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
121
+ return " " + decoded
122
+ else:
123
+ return decoded
124
+
125
+ def convert_tokens_to_string(self, tokens):
126
+ """Converts a sequence of tokens (string) in a single string."""
127
+ current_sub_tokens = []
128
+ out_string = ""
129
+ prev_is_special = False
130
+ for token in tokens:
131
+ # make sure that special tokens are not decoded using sentencepiece model
132
+ if token in self.all_special_tokens:
133
+ if not prev_is_special:
134
+ out_string += " "
135
+ out_string += self.sp_model.decode(current_sub_tokens) + token
136
+ prev_is_special = True
137
+ current_sub_tokens = []
138
+ else:
139
+ current_sub_tokens.append(token)
140
+ prev_is_special = False
141
+ out_string += self.sp_model.decode(current_sub_tokens)
142
+ out_string = self.clean_up_tokenization(out_string)
143
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
144
+ return out_string[1:]
145
+
146
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
147
+ """
148
+ Save the vocabulary and special tokens file to a directory.
149
+
150
+ Args:
151
+ save_directory (`str`):
152
+ The directory in which to save the vocabulary.
153
+
154
+ Returns:
155
+ `Tuple(str)`: Paths to the files saved.
156
+ """
157
+ if not os.path.isdir(save_directory):
158
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
159
+ return
160
+ out_vocab_file = os.path.join(
161
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
162
+ )
163
+
164
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
165
+ copyfile(self.vocab_file, out_vocab_file)
166
+ elif not os.path.isfile(self.vocab_file):
167
+ with open(out_vocab_file, "wb") as fi:
168
+ content_spiece_model = self.sp_model.serialized_model_proto()
169
+ fi.write(content_spiece_model)
170
+
171
+ return (out_vocab_file,)
172
+
173
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
174
+ if self.add_bos_token:
175
+ bos_token_ids = [self.bos_token_id]
176
+ else:
177
+ bos_token_ids = []
178
+
179
+ output = bos_token_ids + token_ids_0
180
+
181
+ if token_ids_1 is not None:
182
+ output = output + token_ids_1
183
+
184
+ if self.add_eos_token:
185
+ output = output + [self.eos_token_id]
186
+
187
+ return output
188
+
189
+ def get_special_tokens_mask(
190
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
191
+ ) -> List[int]:
192
+ """
193
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
194
+ special tokens using the tokenizer `prepare_for_model` method.
195
+
196
+ Args:
197
+ token_ids_0 (`List[int]`):
198
+ List of IDs.
199
+ token_ids_1 (`List[int]`, *optional*):
200
+ Optional second list of IDs for sequence pairs.
201
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
202
+ Whether or not the token list is already formatted with special tokens for the model.
203
+
204
+ Returns:
205
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
206
+ """
207
+ if already_has_special_tokens:
208
+ return super().get_special_tokens_mask(
209
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
210
+ )
211
+
212
+ if token_ids_1 is None:
213
+ return [1] + ([0] * len(token_ids_0)) + [1]
214
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
215
+
216
+ def create_token_type_ids_from_sequences(
217
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
218
+ ) -> List[int]:
219
+ """
220
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
221
+ use of token type ids, therefore a list of zeros is returned.
222
+
223
+ Args:
224
+ token_ids_0 (`List[int]`):
225
+ List of IDs.
226
+ token_ids_1 (`List[int]`, *optional*):
227
+ Optional second list of IDs for sequence pairs.
228
+
229
+ Returns:
230
+ `List[int]`: List of zeros.
231
+ """
232
+ eos = [self.eos_token_id]
233
+
234
+ if token_ids_1 is None:
235
+ return len(token_ids_0 + eos) * [0]
236
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
tokenization_internlm2_fast.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """Tokenization Fast class for InternLM."""
19
+ import os
20
+ from shutil import copyfile
21
+ from typing import Any, Dict, Optional, Tuple
22
+
23
+ from tokenizers import processors, decoders, Tokenizer, normalizers
24
+ from tokenizers.models import BPE
25
+
26
+ from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
27
+ from transformers.utils import logging
28
+
29
+ from transformers.convert_slow_tokenizer import (
30
+ SLOW_TO_FAST_CONVERTERS,
31
+ SpmConverter,
32
+ SentencePieceExtractor,
33
+ )
34
+
35
+ from .tokenization_internlm2 import InternLM2Tokenizer
36
+
37
+ logger = logging.get_logger(__name__)
38
+
39
+ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
40
+
41
+ # Modified from transformers.convert_slow_tokenizer.LlamaConverter
42
+ class InternLM2Converter(SpmConverter):
43
+ handle_byte_fallback = True
44
+
45
+ def vocab(self, proto):
46
+ vocab = [
47
+ ("<unk>", 0.0),
48
+ ("<s>", 0.0),
49
+ ("</s>", 0.0),
50
+ ]
51
+ vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
52
+ return vocab
53
+
54
+ def unk_id(self, proto):
55
+ unk_id = 0
56
+ return unk_id
57
+
58
+ def decoder(self, replacement, add_prefix_space):
59
+ decoders_sequence = [
60
+ decoders.Replace("▁", " "),
61
+ decoders.ByteFallback(),
62
+ decoders.Fuse(),
63
+ ]
64
+ if self.proto.normalizer_spec.add_dummy_prefix:
65
+ decoders_sequence.append(decoders.Strip(content=" ", left=1))
66
+ return decoders.Sequence(decoders_sequence)
67
+
68
+ def tokenizer(self, proto):
69
+ model_type = proto.trainer_spec.model_type
70
+ vocab_scores = self.vocab(proto)
71
+ # special tokens
72
+ added_tokens = self.original_tokenizer.added_tokens_decoder
73
+ for i in range(len(vocab_scores)):
74
+ piece, score = vocab_scores[i]
75
+ if i in added_tokens:
76
+ vocab_scores[i] = (added_tokens[i].content, score)
77
+ if model_type == 1:
78
+ raise RuntimeError("InternLM2 is supposed to be a BPE model!")
79
+
80
+ elif model_type == 2:
81
+ _, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
82
+ bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
83
+ tokenizer = Tokenizer(
84
+ BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
85
+ )
86
+ tokenizer.add_special_tokens(
87
+ [ added_token for index, added_token in added_tokens.items()]
88
+ )
89
+ else:
90
+ raise Exception(
91
+ "You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
92
+ )
93
+
94
+ return tokenizer
95
+
96
+ def normalizer(self, proto):
97
+ normalizers_list = []
98
+ if proto.normalizer_spec.add_dummy_prefix:
99
+ normalizers_list.append(normalizers.Prepend(prepend="▁"))
100
+ normalizers_list.append(normalizers.Replace(pattern=" ", content="▁"))
101
+ return normalizers.Sequence(normalizers_list)
102
+
103
+ def pre_tokenizer(self, replacement, add_prefix_space):
104
+ return None
105
+
106
+ SLOW_TO_FAST_CONVERTERS["InternLM2Tokenizer"] = InternLM2Converter
107
+
108
+
109
+ # Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
110
+ class InternLM2TokenizerFast(PreTrainedTokenizerFast):
111
+ vocab_files_names = VOCAB_FILES_NAMES
112
+ slow_tokenizer_class = InternLM2Tokenizer
113
+ padding_side = "left"
114
+ model_input_names = ["input_ids", "attention_mask"]
115
+ _auto_class = "AutoTokenizer"
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_file,
120
+ unk_token="<unk>",
121
+ bos_token="<s>",
122
+ eos_token="</s>",
123
+ pad_token="</s>",
124
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
125
+ add_bos_token=True,
126
+ add_eos_token=False,
127
+ decode_with_prefix_space=False,
128
+ clean_up_tokenization_spaces=False,
129
+ **kwargs,
130
+ ):
131
+ super().__init__(
132
+ vocab_file=vocab_file,
133
+ unk_token=unk_token,
134
+ bos_token=bos_token,
135
+ eos_token=eos_token,
136
+ pad_token=pad_token,
137
+ sp_model_kwargs=sp_model_kwargs,
138
+ add_bos_token=add_bos_token,
139
+ add_eos_token=add_eos_token,
140
+ decode_with_prefix_space=decode_with_prefix_space,
141
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
142
+ **kwargs,
143
+ )
144
+ self._add_bos_token = add_bos_token
145
+ self._add_eos_token = add_eos_token
146
+ self.update_post_processor()
147
+ self.vocab_file = vocab_file
148
+
149
+ @property
150
+ def can_save_slow_tokenizer(self) -> bool:
151
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
152
+
153
+ def update_post_processor(self):
154
+ """
155
+ Updates the underlying post processor with the current `bos_token` and `eos_token`.
156
+ """
157
+ bos = self.bos_token
158
+ bos_token_id = self.bos_token_id
159
+ if bos is None and self.add_bos_token:
160
+ raise ValueError("add_bos_token = True but bos_token = None")
161
+
162
+ eos = self.eos_token
163
+ eos_token_id = self.eos_token_id
164
+ if eos is None and self.add_eos_token:
165
+ raise ValueError("add_eos_token = True but eos_token = None")
166
+
167
+ single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
168
+ pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
169
+
170
+ special_tokens = []
171
+ if self.add_bos_token:
172
+ special_tokens.append((bos, bos_token_id))
173
+ if self.add_eos_token:
174
+ special_tokens.append((eos, eos_token_id))
175
+ self._tokenizer.post_processor = processors.TemplateProcessing(
176
+ single=single, pair=pair, special_tokens=special_tokens
177
+ )
178
+
179
+ @property
180
+ def add_eos_token(self):
181
+ return self._add_eos_token
182
+
183
+ @property
184
+ def add_bos_token(self):
185
+ return self._add_bos_token
186
+
187
+ @add_eos_token.setter
188
+ def add_eos_token(self, value):
189
+ self._add_eos_token = value
190
+ self.update_post_processor()
191
+
192
+ @add_bos_token.setter
193
+ def add_bos_token(self, value):
194
+ self._add_bos_token = value
195
+ self.update_post_processor()
196
+
197
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
198
+ if not self.can_save_slow_tokenizer:
199
+ raise ValueError(
200
+ "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
201
+ "tokenizer."
202
+ )
203
+
204
+ if not os.path.isdir(save_directory):
205
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
206
+ return
207
+ out_vocab_file = os.path.join(
208
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
209
+ )
210
+
211
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
212
+ copyfile(self.vocab_file, out_vocab_file)
213
+
214
+ return (out_vocab_file,)
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ee8746f75300bd21fced16093893e714fcdc0411ea86bbf391d0e00dc6dc1d1
3
+ size 10541373
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
3
+ size 1477754
tokenizer_config.json ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "92538": {
30
+ "content": "<|plugin|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "92539": {
38
+ "content": "<|interpreter|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "92540": {
46
+ "content": "<|action_end|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "92541": {
54
+ "content": "<|action_start|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "92542": {
62
+ "content": "<|im_end|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "92543": {
70
+ "content": "<|im_start|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ }
77
+ },
78
+ "additional_special_tokens": [
79
+ "<|im_start|>",
80
+ "<|im_end|>",
81
+ "<|action_start|>",
82
+ "<|action_end|>",
83
+ "<|interpreter|>",
84
+ "<|plugin|>"
85
+ ],
86
+ "auto_map": {
87
+ "AutoTokenizer": [
88
+ "tokenization_internlm2.InternLM2Tokenizer",
89
+ "tokenization_internlm2_fast.InternLM2TokenizerFast"
90
+ ]
91
+ },
92
+ "bos_token": "<s>",
93
+ "chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
94
+ "clean_up_tokenization_spaces": false,
95
+ "decode_with_prefix_space": false,
96
+ "eos_token": "</s>",
97
+ "model_max_length": 1000000000000000019884624838656,
98
+ "pad_token": "</s>",
99
+ "sp_model_kwargs": null,
100
+ "tokenizer_class": "InternLM2Tokenizer",
101
+ "unk_token": "<unk>"
102
+ }