Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 255.34 +/- 16.42
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bcc0d0a6b90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bcc0d0a6c20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bcc0d0a6cb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bcc0d0a6d40>", "_build": "<function ActorCriticPolicy._build at 0x7bcc0d0a6dd0>", "forward": "<function ActorCriticPolicy.forward at 0x7bcc0d0a6e60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bcc0d0a6ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bcc0d0a6f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7bcc0d0a7010>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bcc0d0a70a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bcc0d0a7130>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bcc0d0a71c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bcc0d1fea00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1731565577735571064, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMITr5NdVs/PqXwvJYZhb7TVse9MFwsPQAAAAAAAAAAQOCHvV1Lkj5/e0s+4wOAvv5bNj0DLtM8AAAAAAAAAAD6DBU+H9znu7VzeTsg5Lq5p5pcvWDjnLoAAIA/AACAP2Zgo7zHyug+Br6vPGVPnL6sMQY9RTqkPAAAAAAAAAAAQAsRPpyQNz2izwq+N3iJvrw9jjs4w1W9AAAAAAAAAADm3fq9H0+Eu5svrj1rI1w9ejuxvNg0Uz0AAIA/AACAPw1ysz3DOTi6+kkrNZ6yDjDcyIA63QRgtAAAgD8AAAAAalC2PqL2jD8jpFE+gkasvq0mcT7Oxte9AAAAAAAAAACavy083IFMvB3Vv7yJlx29kxC7PZ84AT4AAIA/AACAP+bbuz3eRqw/vPoVPxKRkb7IYkM9us8xPgAAAAAAAAAAAMTKPK2Grj/kQpE+Ueigvu5FoTvdm7k9AAAAAAAAAACaUJY8FIqAumtr0LjkIr2zg6EJOyPt8jcAAIA/AACAP/BthT6Uppw/64bqPvEbwb69tXc+9rb0PAAAAAAAAAAAzQ6xPSlgXLreu5u6aYG7uI+9WDti6sc5AACAPwAAgD8mZYi9tWhCP52HKT4vXIK+w8QVPTAzG7wAAAAAAAAAAICXNr0lSyk+5ekZvfVZT74ZpKU8KVbMvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDCAZn+Q2eMAWyUTVkBjAF0lEdAlXd0RradtnV9lChoBkdAcAl446wMY2gHTaECaAhHQJV8GlMyrPt1fZQoaAZHQFC9HSncclxoB00QAWgIR0CVfCW0JF9bdX2UKGgGR0Bxr06HTI/8aAdNYgFoCEdAlX29GZuyeXV9lChoBkdAcCwe40/GEWgHTVoCaAhHQJV+HRG+bmV1fZQoaAZHQEH5c9nscABoB0vMaAhHQJV+ya1Cw8p1fZQoaAZHQHD1vAKv3aloB017AWgIR0CVfy/Pw/gSdX2UKGgGR0Bw2xtdiUgTaAdNMgFoCEdAlYCdNzr/sHV9lChoBkdAbsuuf29L6GgHTTACaAhHQJWCDGJemel1fZQoaAZHQHDegHJLdvdoB00UA2gIR0CVgiCV8kUsdX2UKGgGR0Bt1Gw/xDsuaAdNagJoCEdAlZToPsiSq3V9lChoBkdASGYChew9q2gHS95oCEdAlZYS7K7qZHV9lChoBkdAbW+wSrYGuGgHTbcBaAhHQJWW9zxPO6d1fZQoaAZHQHFtKEnLJS1oB02LAWgIR0CVlviuuA7QdX2UKGgGR0BwJsh3aBZqaAdNggFoCEdAlZgGeYlY2nV9lChoBkdAcjaCgsbvPWgHTZsBaAhHQJWYYoZydWh1fZQoaAZHQG0LCRwIdENoB00nAWgIR0CVmXcwQDmsdX2UKGgGR0BuEPZIxxkvaAdNbgJoCEdAlZsQxBVuJnV9lChoBkdAcKPCzTnaFmgHTTkBaAhHQJWdgJ+lTFV1fZQoaAZHQDowEnssxwhoB0u6aAhHQJWdm0Y0l7d1fZQoaAZHQC3bUExIre9oB0v1aAhHQJWeYZtNzsB1fZQoaAZHQHB7WLpA2Q5oB02DAWgIR0CVoGFTvRZ2dX2UKGgGR8AZ87OmixmkaAdNAwFoCEdAlaKHnZCfH3V9lChoBkdAb4a/keZG8WgHTRMBaAhHQJWkADmr8zh1fZQoaAZHQHAjsriEQGxoB023AWgIR0CVpA2QXAM2dX2UKGgGR0BwCyMcZLqVaAdNdgFoCEdAlaRn2dupCXV9lChoBkdAcYJjriVB2WgHTSkBaAhHQJWl1OUMXrN1fZQoaAZHQG3jxy4nWrhoB00IAmgIR0CVpd4wAU+LdX2UKGgGR0BwOsWxhUiqaAdNSQFoCEdAlaYmgOBlMHV9lChoBkdAcge1vES/TWgHTdABaAhHQJWmaKpDNQl1fZQoaAZHQHInKJZW7vpoB01fAWgIR0CVqhchkiD/dX2UKGgGR0BuwXLDAJswaAdNlAFoCEdAlarE1AJLNHV9lChoBkdAbZDMC9ytFWgHTU8BaAhHQJWrXhXKbKB1fZQoaAZHwEC9El3Qla9oB0v8aAhHQJWsBMyrPt51fZQoaAZHQF9WZzxPO6doB03oA2gIR0CVrqWGh24edX2UKGgGR0Bx4Sd6LOzIaAdNpQFoCEdAla8hxT850nV9lChoBkdAb0557gKnemgHTUMBaAhHQJWv0nXumaZ1fZQoaAZHQHJ5nNHH3lFoB03fAWgIR0CVsKZdv864dX2UKGgGR0BsllUOuq3maAdNOgFoCEdAlbElcUuct3V9lChoBkdAcBmkwvg3tWgHTTYBaAhHQJWxl7/n4fx1fZQoaAZHQG3e+TeO4oZoB010AmgIR0CVsf5S3soldX2UKGgGR0BwSiQjlgc+aAdNXgFoCEdAlbJX9BKL9HV9lChoBkdAcOKupS75EmgHTWABaAhHQJWyotOEdvN1fZQoaAZHQHIVaF/QSjBoB03mAWgIR0CVsrRZlnRLdX2UKGgGR0BxcToaDPGAaAdN1QFoCEdAlbSOQyRB/3V9lChoBkdAcRceGwiaAmgHTUABaAhHQJW1C9SMtK91fZQoaAZHQHHWpV81Gb1oB00xAWgIR0CVtjnlnyuqdX2UKGgGR0Bwd5xn3+MqaAdNUQFoCEdAlbag44p+dHV9lChoBkdAcQuSkj5bhWgHTagBaAhHQJW5A7vG6wt1fZQoaAZHQHDg6Df3vhJoB00iAWgIR0CVuTUO/cnFdX2UKGgGR0BxoxEE1VHXaAdNXAJoCEdAlbk/L1VYIXV9lChoBkdAbZnRa5f+j2gHTVgBaAhHQJW6ev0RODd1fZQoaAZHQG9yh6Skj5doB02FAWgIR0CVzd+FUQ05dX2UKGgGR0BvW1gnc+JQaAdNVAFoCEdAlc4rDAJswnV9lChoBkdAP+0m2LHdXWgHS+FoCEdAlc6dxEORT3V9lChoBkdAcQNZNfw7T2gHTTABaAhHQJXOzUPQOWl1fZQoaAZHQGt1IcinpB5oB01nAWgIR0CV0Mk56t1ZdX2UKGgGR0Bx5nM9r434aAdNVwFoCEdAldEMM/hVEXV9lChoBkdAcGad/rjYI2gHTX4BaAhHQJXRQs3AEdN1fZQoaAZHQGrbBrvb48FoB02VAWgIR0CV0bR6F/QTdX2UKGgGR0BxaKpxWDHwaAdNOQFoCEdAldMSVfNRnHV9lChoBkdAcIop0fYBeWgHTT4BaAhHQJXVV5MURFt1fZQoaAZHQHKVf0/W1+loB03VAWgIR0CV1hXyiEg4dX2UKGgGR0BuyNqesgdPaAdNhgFoCEdAlddtqYZ2p3V9lChoBkdAbLUA1ejVQWgHTTgBaAhHQJXX0ESuhbp1fZQoaAZHQG3yVyeZof1oB01UAWgIR0CV2JspXp4bdX2UKGgGR0BuMLAnDziCaAdNVgFoCEdAldjlVT72tnV9lChoBkdAbdNfiPyTZGgHTRQBaAhHQJXZGCpWFOB1fZQoaAZHQHBrhKL876poB00UAWgIR0CV2XWO6unudX2UKGgGR0BxCrHtF8XvaAdNHAFoCEdAldmRCpm29nV9lChoBkdAbc4zQeFL4GgHTSUBaAhHQJXb7Y9Pk7x1fZQoaAZHQG7h0hePaL5oB01AAWgIR0CV3Ba/h2nsdX2UKGgGR0Bx727Xg9/0aAdNnwFoCEdAld0UDZDiO3V9lChoBkdAcq932mHgxmgHTdUBaAhHQJXdwdJaq0d1fZQoaAZHQG3PWkrPMStoB01rAWgIR0CV3cJSzgMudX2UKGgGR0ByNiepXIU8aAdNQAFoCEdAld3VWOp84XV9lChoBkdAca+CVKPGQ2gHTZMBaAhHQJXet+b3Gn51fZQoaAZHQHAEjTSb6P9oB00pAWgIR0CV3rkmQbMpdX2UKGgGR0BuSWDL8rI6aAdNNQFoCEdAld+wHE/B33V9lChoBkdAcTcCjk+5fGgHTTEBaAhHQJXg/Rv3rUt1fZQoaAZHQG9KvIXCTEBoB009AWgIR0CV4qSowVTKdX2UKGgGR0BOT6NVBD5TaAdL0WgIR0CV44kPczqKdX2UKGgGR0BwJFTUAks0aAdNZwFoCEdAlePuEdvKl3V9lChoBkdAcaiS5y2hI2gHTVYBaAhHQJXkAgOjIq91fZQoaAZHQHF/DshPj4poB02bAWgIR0CV5EAFgUlBdX2UKGgGR0BwPd7ojfNzaAdNpQFoCEdAleWq/M4cWHV9lChoBkdAcEXRtgrpaGgHTZ8BaAhHQJXmfIkqto11fZQoaAZHQDzCA4GUwBZoB0v8aAhHQJXm0GHHmzV1fZQoaAZHQGyMfhuO0b9oB000AWgIR0CV54dQwblzdX2UKGgGR0Bwzfb349HMaAdNPAFoCEdAlefH+qBEr3V9lChoBkdAcaPYISlFdGgHTYEBaAhHQJXoQNe+mFd1fZQoaAZHQG4Mnmq5sj5oB01nAWgIR0CV6Su3c580dX2UKGgGR0BvNJM36yjYaAdNWQFoCEdAlem6DoQnQnV9lChoBkdAb0D1Tzd1uGgHTUgBaAhHQJXqPYsd1dR1fZQoaAZHQG0NXirDIiloB01LAWgIR0CV66p0wJw9dX2UKGgGR0BuhDmbLEDRaAdNPQFoCEdAlezHo1UEPnV9lChoBkdAcm4/Y8Md92gHTSoCaAhHQJXtRlrdnCh1fZQoaAZHQGuAPp6hQFdoB01NAWgIR0CV7oFS88LbdX2UKGgGR0Bv+uGwiaAnaAdNXwFoCEdAle+E1ZTya3V9lChoBkdAcADx7iQ1aWgHTSEBaAhHQJXvwwCbMHN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd2cfc6d7f1be35dab754cf9c789b6bfccb6524f94e8396e3baea17224c9d8f5
|
3 |
+
size 148012
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7bcc0d0a6b90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bcc0d0a6c20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bcc0d0a6cb0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bcc0d0a6d40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7bcc0d0a6dd0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7bcc0d0a6e60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7bcc0d0a6ef0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bcc0d0a6f80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7bcc0d0a7010>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bcc0d0a70a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bcc0d0a7130>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7bcc0d0a71c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7bcc0d1fea00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1731565577735571064,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMITr5NdVs/PqXwvJYZhb7TVse9MFwsPQAAAAAAAAAAQOCHvV1Lkj5/e0s+4wOAvv5bNj0DLtM8AAAAAAAAAAD6DBU+H9znu7VzeTsg5Lq5p5pcvWDjnLoAAIA/AACAP2Zgo7zHyug+Br6vPGVPnL6sMQY9RTqkPAAAAAAAAAAAQAsRPpyQNz2izwq+N3iJvrw9jjs4w1W9AAAAAAAAAADm3fq9H0+Eu5svrj1rI1w9ejuxvNg0Uz0AAIA/AACAPw1ysz3DOTi6+kkrNZ6yDjDcyIA63QRgtAAAgD8AAAAAalC2PqL2jD8jpFE+gkasvq0mcT7Oxte9AAAAAAAAAACavy083IFMvB3Vv7yJlx29kxC7PZ84AT4AAIA/AACAP+bbuz3eRqw/vPoVPxKRkb7IYkM9us8xPgAAAAAAAAAAAMTKPK2Grj/kQpE+Ueigvu5FoTvdm7k9AAAAAAAAAACaUJY8FIqAumtr0LjkIr2zg6EJOyPt8jcAAIA/AACAP/BthT6Uppw/64bqPvEbwb69tXc+9rb0PAAAAAAAAAAAzQ6xPSlgXLreu5u6aYG7uI+9WDti6sc5AACAPwAAgD8mZYi9tWhCP52HKT4vXIK+w8QVPTAzG7wAAAAAAAAAAICXNr0lSyk+5ekZvfVZT74ZpKU8KVbMvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDCAZn+Q2eMAWyUTVkBjAF0lEdAlXd0RradtnV9lChoBkdAcAl446wMY2gHTaECaAhHQJV8GlMyrPt1fZQoaAZHQFC9HSncclxoB00QAWgIR0CVfCW0JF9bdX2UKGgGR0Bxr06HTI/8aAdNYgFoCEdAlX29GZuyeXV9lChoBkdAcCwe40/GEWgHTVoCaAhHQJV+HRG+bmV1fZQoaAZHQEH5c9nscABoB0vMaAhHQJV+ya1Cw8p1fZQoaAZHQHD1vAKv3aloB017AWgIR0CVfy/Pw/gSdX2UKGgGR0Bw2xtdiUgTaAdNMgFoCEdAlYCdNzr/sHV9lChoBkdAbsuuf29L6GgHTTACaAhHQJWCDGJemel1fZQoaAZHQHDegHJLdvdoB00UA2gIR0CVgiCV8kUsdX2UKGgGR0Bt1Gw/xDsuaAdNagJoCEdAlZToPsiSq3V9lChoBkdASGYChew9q2gHS95oCEdAlZYS7K7qZHV9lChoBkdAbW+wSrYGuGgHTbcBaAhHQJWW9zxPO6d1fZQoaAZHQHFtKEnLJS1oB02LAWgIR0CVlviuuA7QdX2UKGgGR0BwJsh3aBZqaAdNggFoCEdAlZgGeYlY2nV9lChoBkdAcjaCgsbvPWgHTZsBaAhHQJWYYoZydWh1fZQoaAZHQG0LCRwIdENoB00nAWgIR0CVmXcwQDmsdX2UKGgGR0BuEPZIxxkvaAdNbgJoCEdAlZsQxBVuJnV9lChoBkdAcKPCzTnaFmgHTTkBaAhHQJWdgJ+lTFV1fZQoaAZHQDowEnssxwhoB0u6aAhHQJWdm0Y0l7d1fZQoaAZHQC3bUExIre9oB0v1aAhHQJWeYZtNzsB1fZQoaAZHQHB7WLpA2Q5oB02DAWgIR0CVoGFTvRZ2dX2UKGgGR8AZ87OmixmkaAdNAwFoCEdAlaKHnZCfH3V9lChoBkdAb4a/keZG8WgHTRMBaAhHQJWkADmr8zh1fZQoaAZHQHAjsriEQGxoB023AWgIR0CVpA2QXAM2dX2UKGgGR0BwCyMcZLqVaAdNdgFoCEdAlaRn2dupCXV9lChoBkdAcYJjriVB2WgHTSkBaAhHQJWl1OUMXrN1fZQoaAZHQG3jxy4nWrhoB00IAmgIR0CVpd4wAU+LdX2UKGgGR0BwOsWxhUiqaAdNSQFoCEdAlaYmgOBlMHV9lChoBkdAcge1vES/TWgHTdABaAhHQJWmaKpDNQl1fZQoaAZHQHInKJZW7vpoB01fAWgIR0CVqhchkiD/dX2UKGgGR0BuwXLDAJswaAdNlAFoCEdAlarE1AJLNHV9lChoBkdAbZDMC9ytFWgHTU8BaAhHQJWrXhXKbKB1fZQoaAZHwEC9El3Qla9oB0v8aAhHQJWsBMyrPt51fZQoaAZHQF9WZzxPO6doB03oA2gIR0CVrqWGh24edX2UKGgGR0Bx4Sd6LOzIaAdNpQFoCEdAla8hxT850nV9lChoBkdAb0557gKnemgHTUMBaAhHQJWv0nXumaZ1fZQoaAZHQHJ5nNHH3lFoB03fAWgIR0CVsKZdv864dX2UKGgGR0BsllUOuq3maAdNOgFoCEdAlbElcUuct3V9lChoBkdAcBmkwvg3tWgHTTYBaAhHQJWxl7/n4fx1fZQoaAZHQG3e+TeO4oZoB010AmgIR0CVsf5S3soldX2UKGgGR0BwSiQjlgc+aAdNXgFoCEdAlbJX9BKL9HV9lChoBkdAcOKupS75EmgHTWABaAhHQJWyotOEdvN1fZQoaAZHQHIVaF/QSjBoB03mAWgIR0CVsrRZlnRLdX2UKGgGR0BxcToaDPGAaAdN1QFoCEdAlbSOQyRB/3V9lChoBkdAcRceGwiaAmgHTUABaAhHQJW1C9SMtK91fZQoaAZHQHHWpV81Gb1oB00xAWgIR0CVtjnlnyuqdX2UKGgGR0Bwd5xn3+MqaAdNUQFoCEdAlbag44p+dHV9lChoBkdAcQuSkj5bhWgHTagBaAhHQJW5A7vG6wt1fZQoaAZHQHDg6Df3vhJoB00iAWgIR0CVuTUO/cnFdX2UKGgGR0BxoxEE1VHXaAdNXAJoCEdAlbk/L1VYIXV9lChoBkdAbZnRa5f+j2gHTVgBaAhHQJW6ev0RODd1fZQoaAZHQG9yh6Skj5doB02FAWgIR0CVzd+FUQ05dX2UKGgGR0BvW1gnc+JQaAdNVAFoCEdAlc4rDAJswnV9lChoBkdAP+0m2LHdXWgHS+FoCEdAlc6dxEORT3V9lChoBkdAcQNZNfw7T2gHTTABaAhHQJXOzUPQOWl1fZQoaAZHQGt1IcinpB5oB01nAWgIR0CV0Mk56t1ZdX2UKGgGR0Bx5nM9r434aAdNVwFoCEdAldEMM/hVEXV9lChoBkdAcGad/rjYI2gHTX4BaAhHQJXRQs3AEdN1fZQoaAZHQGrbBrvb48FoB02VAWgIR0CV0bR6F/QTdX2UKGgGR0BxaKpxWDHwaAdNOQFoCEdAldMSVfNRnHV9lChoBkdAcIop0fYBeWgHTT4BaAhHQJXVV5MURFt1fZQoaAZHQHKVf0/W1+loB03VAWgIR0CV1hXyiEg4dX2UKGgGR0BuyNqesgdPaAdNhgFoCEdAlddtqYZ2p3V9lChoBkdAbLUA1ejVQWgHTTgBaAhHQJXX0ESuhbp1fZQoaAZHQG3yVyeZof1oB01UAWgIR0CV2JspXp4bdX2UKGgGR0BuMLAnDziCaAdNVgFoCEdAldjlVT72tnV9lChoBkdAbdNfiPyTZGgHTRQBaAhHQJXZGCpWFOB1fZQoaAZHQHBrhKL876poB00UAWgIR0CV2XWO6unudX2UKGgGR0BxCrHtF8XvaAdNHAFoCEdAldmRCpm29nV9lChoBkdAbc4zQeFL4GgHTSUBaAhHQJXb7Y9Pk7x1fZQoaAZHQG7h0hePaL5oB01AAWgIR0CV3Ba/h2nsdX2UKGgGR0Bx727Xg9/0aAdNnwFoCEdAld0UDZDiO3V9lChoBkdAcq932mHgxmgHTdUBaAhHQJXdwdJaq0d1fZQoaAZHQG3PWkrPMStoB01rAWgIR0CV3cJSzgMudX2UKGgGR0ByNiepXIU8aAdNQAFoCEdAld3VWOp84XV9lChoBkdAca+CVKPGQ2gHTZMBaAhHQJXet+b3Gn51fZQoaAZHQHAEjTSb6P9oB00pAWgIR0CV3rkmQbMpdX2UKGgGR0BuSWDL8rI6aAdNNQFoCEdAld+wHE/B33V9lChoBkdAcTcCjk+5fGgHTTEBaAhHQJXg/Rv3rUt1fZQoaAZHQG9KvIXCTEBoB009AWgIR0CV4qSowVTKdX2UKGgGR0BOT6NVBD5TaAdL0WgIR0CV44kPczqKdX2UKGgGR0BwJFTUAks0aAdNZwFoCEdAlePuEdvKl3V9lChoBkdAcaiS5y2hI2gHTVYBaAhHQJXkAgOjIq91fZQoaAZHQHF/DshPj4poB02bAWgIR0CV5EAFgUlBdX2UKGgGR0BwPd7ojfNzaAdNpQFoCEdAleWq/M4cWHV9lChoBkdAcEXRtgrpaGgHTZ8BaAhHQJXmfIkqto11fZQoaAZHQDzCA4GUwBZoB0v8aAhHQJXm0GHHmzV1fZQoaAZHQGyMfhuO0b9oB000AWgIR0CV54dQwblzdX2UKGgGR0Bwzfb349HMaAdNPAFoCEdAlefH+qBEr3V9lChoBkdAcaPYISlFdGgHTYEBaAhHQJXoQNe+mFd1fZQoaAZHQG4Mnmq5sj5oB01nAWgIR0CV6Su3c580dX2UKGgGR0BvNJM36yjYaAdNWQFoCEdAlem6DoQnQnV9lChoBkdAb0D1Tzd1uGgHTUgBaAhHQJXqPYsd1dR1fZQoaAZHQG0NXirDIiloB01LAWgIR0CV66p0wJw9dX2UKGgGR0BuhDmbLEDRaAdNPQFoCEdAlezHo1UEPnV9lChoBkdAcm4/Y8Md92gHTSoCaAhHQJXtRlrdnCh1fZQoaAZHQGuAPp6hQFdoB01NAWgIR0CV7oFS88LbdX2UKGgGR0Bv+uGwiaAnaAdNXwFoCEdAle+E1ZTya3V9lChoBkdAcADx7iQ1aWgHTSEBaAhHQJXvwwCbMHN1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3b445b3432969e4e5f330fc44161b493dfef5ca237cd42d6499b0e85d7c4ccd
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3386f8362c155de575315a77d53ff1ecbcf62152a9b4d697d9998751b533f2bb
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (164 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 255.33925400529046, "std_reward": 16.4158221346144, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-11-14T06:49:07.664580"}
|