Update README.md
Browse files
README.md
CHANGED
@@ -4,15 +4,38 @@ tags:
|
|
4 |
- summarization
|
5 |
- Seq2Seq
|
6 |
- PyTorch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
8 |
|
9 |
# bart-base-job-info-summarizer
|
10 |
|
11 |
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the private dataset of job offer information scraped from job offer websites and the summary result of the job info.
|
12 |
-
- Rouge1: 0.
|
13 |
-
- Rouge2: 0.
|
14 |
-
- Rougel: 0.
|
15 |
-
- Rougelsum: 0.
|
16 |
|
17 |
## Intended use and limitations:
|
18 |
This model can be used to summarize company and job offer information in such persuasive way
|
@@ -40,12 +63,13 @@ inputs = tokenizer.encode(input_text, return_tensors="pt", max_length=1024, trun
|
|
40 |
|
41 |
summary_ids = model.generate(
|
42 |
inputs,
|
43 |
-
max_length=
|
44 |
min_length=30, # Minimum length of the summary
|
45 |
-
length_penalty
|
46 |
num_beams=6, # Number of beams for beam search
|
|
|
47 |
early_stopping=True,
|
48 |
-
temperature=
|
49 |
do_sample=True
|
50 |
)
|
51 |
|
|
|
4 |
- summarization
|
5 |
- Seq2Seq
|
6 |
- PyTorch
|
7 |
+
model-index:
|
8 |
+
- name: bart-base-finetuned-poems
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: summarization
|
12 |
+
name: Summarization
|
13 |
+
metrics:
|
14 |
+
- name: ROUGE-1
|
15 |
+
type: rouge
|
16 |
+
value: 0.32955500483066247
|
17 |
+
verified: true
|
18 |
+
- name: ROUGE-2
|
19 |
+
type: rouge
|
20 |
+
value: 0.13833204028540397
|
21 |
+
verified: true
|
22 |
+
- name: ROUGE-L
|
23 |
+
type: rouge
|
24 |
+
value: 0.27404767245323625
|
25 |
+
verified: true
|
26 |
+
- name: ROUGE-LSUM
|
27 |
+
type: rouge
|
28 |
+
value: 0.2747326116711135
|
29 |
+
verified: true
|
30 |
---
|
31 |
|
32 |
# bart-base-job-info-summarizer
|
33 |
|
34 |
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the private dataset of job offer information scraped from job offer websites and the summary result of the job info.
|
35 |
+
- Rouge1: 0.32955500483066247
|
36 |
+
- Rouge2: 0.13833204028540397
|
37 |
+
- Rougel: 0.27404767245323625
|
38 |
+
- Rougelsum: 0.2747326116711135
|
39 |
|
40 |
## Intended use and limitations:
|
41 |
This model can be used to summarize company and job offer information in such persuasive way
|
|
|
63 |
|
64 |
summary_ids = model.generate(
|
65 |
inputs,
|
66 |
+
max_length=200, # Maximum length of the summary
|
67 |
min_length=30, # Minimum length of the summary
|
68 |
+
length_penalty=0.98, # Penalty for longer sequences
|
69 |
num_beams=6, # Number of beams for beam search
|
70 |
+
top_p=3.7,
|
71 |
early_stopping=True,
|
72 |
+
temperature=1.4,
|
73 |
do_sample=True
|
74 |
)
|
75 |
|