File size: 3,183 Bytes
5373721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
license: other
base_model: nvidia/mit-b0
tags:
- generated_from_trainer
datasets:
- scene_parse_150
model-index:
- name: segformer-b0-scene-parse-1502
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b0-scene-parse-1502

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset.
It achieves the following results on the evaluation set:
- eval_loss: 2.4662
- eval_mean_iou: 0.0896
- eval_mean_accuracy: 0.1488
- eval_overall_accuracy: 0.6372
- eval_per_category_iou: [0.49227372671878594, 0.5532565415244596, 0.9483966776020463, 0.4564028097943477, 0.3441962504986039, 0.4576400132036027, 0.5344129222022298, 0.2900375472301515, 0.0, 0.6730487219899952, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]
- eval_per_category_accuracy: [0.6219459883933374, 0.9121453160561318, 0.9753296111445005, 0.5487499345286939, 0.7937145485206194, 0.9112436777004357, 0.9588236739306685, 0.623475493316359, 0.0, 0.7976902085634462, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]
- eval_runtime: 16.2659
- eval_samples_per_second: 0.615
- eval_steps_per_second: 0.307
- epoch: 11.0
- step: 220

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3