File size: 3,183 Bytes
5373721 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
license: other
base_model: nvidia/mit-b0
tags:
- generated_from_trainer
datasets:
- scene_parse_150
model-index:
- name: segformer-b0-scene-parse-1502
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-scene-parse-1502
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset.
It achieves the following results on the evaluation set:
- eval_loss: 2.4662
- eval_mean_iou: 0.0896
- eval_mean_accuracy: 0.1488
- eval_overall_accuracy: 0.6372
- eval_per_category_iou: [0.49227372671878594, 0.5532565415244596, 0.9483966776020463, 0.4564028097943477, 0.3441962504986039, 0.4576400132036027, 0.5344129222022298, 0.2900375472301515, 0.0, 0.6730487219899952, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]
- eval_per_category_accuracy: [0.6219459883933374, 0.9121453160561318, 0.9753296111445005, 0.5487499345286939, 0.7937145485206194, 0.9112436777004357, 0.9588236739306685, 0.623475493316359, 0.0, 0.7976902085634462, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]
- eval_runtime: 16.2659
- eval_samples_per_second: 0.615
- eval_steps_per_second: 0.307
- epoch: 11.0
- step: 220
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|