English
TVR-Ranking / README.md
LiangRenjie's picture
Update README.md
ac22a06 verified
metadata
license: cc
datasets:
  - axgroup/Ranking_TVR
language:
  - en

Video Moment Retrieval in Practical Setting: A Dataset of Ranked Moments for Imprecise Queries

The benchmark and dataset for the paper Video Moment Retrieval in Practical Settings: A Dataset of Ranked Moments for Imprecise Queries.

We recommend cloning the code, data, and feature files from the Hugging Face repository at TVR-Ranking. This repository only includes the code for ReLoCLNet_RVMR. You can download the other baseline models from XML_RVMR and CONQUER_RVMR.

TVR_Ranking_overview

Getting started

1. Install the requisites

The Python packages we used are listed as follows. Commonly, the most recent versions work well.

conda create --name tvr_ranking python=3.11
conda activate tvr_ranking
pip install pytorch # 2.2.1+cu121
pip install tensorboard 
pip install h5py pandas tqdm easydict pyyaml

2. Download full dataset

For the full dataset, please go down from Hugging Face TVR-Ranking.
The detailed introduction and raw annotations is available at Dataset Introduction.

TVR_Ranking/
  -val.json                  
  -test.json                 
  -train_top01.json
  -train_top20.json
  -train_top40.json
  -video_corpus.json

3. Download features

For the query BERT features, you can download them from Hugging Face TVR-Ranking.
For the video and subtitle features, please request them at TVR.

tar -xf tvr_feature_release.tar.gz -C data/TVR_Ranking/feature

4. Training

# modify the data path first 
sh run_top20.sh

5. Inferring

The checkpoint can all be accessed from Hugging Face TVR-Ranking.

sh infer_top20.sh

Experiment Results

Baseline

The baseline performance of $NDGC@40$ was shown as follows. Top $N$ moments were comprised of a pseudo training set by the query-caption similarity.

Model Train Set Top N IoU=0.3 IoU=0.5 IoU=0.7
Val Test Val Test Val Test
XML 1 0.1077 0.1016 0.0775 0.0727 0.0273 0.0294
20 0.2580 0.2512 0.1874 0.1853 0.0705 0.0753
40 0.2408 0.2432 0.1740 0.1791 0.0666 0.0720
CONQUER 1 0.0952 0.0835 0.0808 0.0687 0.0526 0.0484
20 0.2130 0.1995 0.1976 0.1867 0.1527 0.1368
40 0.2183 0.1968 0.2022 0.1851 0.1524 0.1365
ReLoCLNet 1 0.1533 0.1489 0.1321 0.1304 0.0878 0.0869
20 0.4039 0.4031 0.3656 0.3648 0.2542 0.2567
40 0.4725 0.4735 0.4337 0.4337 0.3015 0.3079

ReLoCLNet Performance

Model Train Set Top N IoU=0.3 IoU=0.5 IoU=0.7
Val Test Val Test Val Test
NDCG@10
ReLoCLNet 1 0.1575 0.1525 0.1358 0.1349 0.0908 0.0916
ReLoCLNet 20 0.3751 0.3751 0.3407 0.3397 0.2316 0.2338
ReLoCLNet 40 0.4339 0.4353 0.3984 0.3986 0.2693 0.2807
NDCG@20
ReLoCLNet 1 0.1504 0.1439 0.1303 0.1269 0.0866 0.0849
ReLoCLNet 20 0.3815 0.3792 0.3462 0.3427 0.2381 0.2386
ReLoCLNet 40 0.4418 0.4439 0.4060 0.4059 0.2787 0.2877
NDCG@40
ReLoCLNet 1 0.1533 0.1489 0.1321 0.1304 0.0878 0.0869
ReLoCLNet 20 0.4039 0.4031 0.3656 0.3648 0.2542 0.2567
ReLoCLNet 40 0.4725 0.4735 0.4337 0.4337 0.3015 0.3079

Citation

If you feel this project helpful to your research, please cite our work.