import os, json import torch from tqdm import tqdm from modules.dataset_init import prepare_dataset from modules.infer_lib import grab_corpus_feature, eval_epoch from utils.basic_utils import get_logger from utils.setup import set_seed, get_args from utils.run_utils import prepare_optimizer, prepare_model, logger_ndcg_iou, resume_model def main(): opt = get_args() logger = get_logger(opt.results_path, opt.exp_id) set_seed(opt.seed) logger.info("Arguments:\n%s", json.dumps(vars(opt), indent=4)) opt.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') logger.info(f"device: {opt.device}") train_loader, corpus_loader, corpus_video_list, val_loader, test_loader, val_gt, test_gt = prepare_dataset(opt) model = prepare_model(opt, logger) # optimizer = prepare_optimizer(model, opt, len(train_loader) * opt.n_epoch) # start_epoch = 0 # model, optimizer, start_epoch = resume_model(logger, opt, model, optimizer, start_epoch) model, _, _ = resume_model(logger, opt, model) model.eval() corpus_feature = grab_corpus_feature(model, corpus_loader, opt.device) val_ndcg_iou = eval_epoch(model, corpus_feature, val_loader, val_gt, opt, corpus_video_list) test_ndcg_iou = eval_epoch(model, corpus_feature, test_loader, test_gt, opt, corpus_video_list) logger_ndcg_iou(val_ndcg_iou, logger, "VAL") logger_ndcg_iou(test_ndcg_iou, logger, "TEST") if __name__ == '__main__': main()