import os import json import zipfile import numpy as np import pickle import yaml def uniform_feature_sampling(features, max_len): num_clips = features.shape[0] if max_len is None or num_clips <= max_len: return features idxs = np.arange(0, max_len + 1, 1.0) / max_len * num_clips idxs = np.round(idxs).astype(np.int32) idxs[idxs > num_clips - 1] = num_clips - 1 new_features = [] for i in range(max_len): s_idx, e_idx = idxs[i], idxs[i + 1] if s_idx < e_idx: new_features.append(np.mean(features[s_idx:e_idx], axis=0)) else: new_features.append(features[s_idx]) new_features = np.asarray(new_features) return new_features def compute_overlap(pred, gt): # check format assert isinstance(pred, list) and isinstance(gt, list) pred_is_list = isinstance(pred[0], list) gt_is_list = isinstance(gt[0], list) pred = pred if pred_is_list else [pred] gt = gt if gt_is_list else [gt] # compute overlap pred, gt = np.array(pred), np.array(gt) inter_left = np.maximum(pred[:, 0, None], gt[None, :, 0]) inter_right = np.minimum(pred[:, 1, None], gt[None, :, 1]) inter = np.maximum(0.0, inter_right - inter_left) union_left = np.minimum(pred[:, 0, None], gt[None, :, 0]) union_right = np.maximum(pred[:, 1, None], gt[None, :, 1]) union = np.maximum(1e-12, union_right - union_left) overlap = 1.0 * inter / union # reformat output overlap = overlap if gt_is_list else overlap[:, 0] overlap = overlap if pred_is_list else overlap[0] return overlap def time_to_index(start_time, end_time, num_units, duration): s_times = np.arange(0, num_units).astype(np.float32) / float(num_units) * duration e_times = np.arange(1, num_units + 1).astype(np.float32) / float(num_units) * duration candidates = np.stack([np.repeat(s_times[:, None], repeats=num_units, axis=1), np.repeat(e_times[None, :], repeats=num_units, axis=0)], axis=2).reshape((-1, 2)) overlaps = compute_overlap(candidates.tolist(), [start_time, end_time]).reshape(num_units, num_units) start_index = np.argmax(overlaps) // num_units end_index = np.argmax(overlaps) % num_units return start_index, end_index def load_yaml(filename): try: with open(filename, 'r') as file: return yaml.safe_load(file) except yaml.YAMLError as exc: print(f"Error parsing YAML file: {exc}") return None except FileNotFoundError: print(f"File not found: {filename}") return None def load_pickle(filename): with open(filename, "rb") as f: return pickle.load(f) def save_pickle(data, filename): with open(filename, "wb") as f: pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL) def load_json(filename): with open(filename, "r") as f: return json.load(f) def save_json(data, filename, save_pretty=False, sort_keys=False): with open(filename, "w") as f: if save_pretty: f.write(json.dumps(data, indent=4, sort_keys=sort_keys)) else: json.dump(data, f) def load_jsonl(filename): with open(filename, "r") as f: return [json.loads(l.strip("\n")) for l in f.readlines()] def save_jsonl(data, filename): """data is a list""" with open(filename, "w") as f: f.write("\n".join([json.dumps(e) for e in data])) def save_lines(list_of_str, filepath): with open(filepath, "w") as f: f.write("\n".join(list_of_str)) def read_lines(filepath): with open(filepath, "r") as f: return [e.strip("\n") for e in f.readlines()] def mkdirp(p): if not os.path.exists(p): os.makedirs(p) def flat_list_of_lists(l): """flatten a list of lists [[1,2], [3,4]] to [1,2,3,4]""" return [item for sublist in l for item in sublist] def convert_to_seconds(hms_time): """ convert '00:01:12' to 72 seconds. :hms_time (str): time in comma separated string, e.g. '00:01:12' :return (int): time in seconds, e.g. 72 """ times = [float(t) for t in hms_time.split(":")] return times[0] * 3600 + times[1] * 60 + times[2] def get_video_name_from_url(url): return url.split("/")[-1][:-4] def merge_dicts(list_dicts): merged_dict = list_dicts[0].copy() for i in range(1, len(list_dicts)): merged_dict.update(list_dicts[i]) return merged_dict def l2_normalize_np_array(np_array, eps=1e-5): """np_array: np.ndarray, (*, D), where the last dim will be normalized""" return np_array / (np.linalg.norm(np_array, axis=-1, keepdims=True) + eps) def make_zipfile(src_dir, save_path, enclosing_dir="", exclude_dirs=None, exclude_extensions=None, exclude_dirs_substring=None): """make a zip file of root_dir, save it to save_path. exclude_paths will be excluded if it is a subdir of root_dir. An enclosing_dir is added is specified. """ abs_src = os.path.abspath(src_dir) with zipfile.ZipFile(save_path, "w") as zf: for dirname, subdirs, files in os.walk(src_dir): if exclude_dirs is not None: for e_p in exclude_dirs: if e_p in subdirs: subdirs.remove(e_p) if exclude_dirs_substring is not None: to_rm = [] for d in subdirs: if exclude_dirs_substring in d: to_rm.append(d) for e in to_rm: subdirs.remove(e) arcname = os.path.join(enclosing_dir, dirname[len(abs_src) + 1:]) zf.write(dirname, arcname) for filename in files: if exclude_extensions is not None: if os.path.splitext(filename)[1] in exclude_extensions: continue # do not zip it absname = os.path.join(dirname, filename) arcname = os.path.join(enclosing_dir, absname[len(abs_src) + 1:]) zf.write(absname, arcname) class AverageMeter(object): """Computes and stores the average and current/max/min value""" def __init__(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 self.max = -1e10 self.min = 1e10 self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 self.max = -1e10 self.min = 1e10 def update(self, val, n=1): self.max = max(val, self.max) self.min = min(val, self.min) self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def dissect_by_lengths(np_array, lengths, dim=0, assert_equal=True): """Dissect an array (N, D) into a list a sub-array, np_array.shape[0] == sum(lengths), Output is a list of nd arrays, singlton dimention is kept""" if assert_equal: assert len(np_array) == sum(lengths) length_indices = [0, ] for i in range(len(lengths)): length_indices.append(length_indices[i] + lengths[i]) if dim == 0: array_list = [np_array[length_indices[i]:length_indices[i+1]] for i in range(len(lengths))] elif dim == 1: array_list = [np_array[:, length_indices[i]:length_indices[i + 1]] for i in range(len(lengths))] elif dim == 2: array_list = [np_array[:, :, length_indices[i]:length_indices[i + 1]] for i in range(len(lengths))] else: raise NotImplementedError return array_list def get_ratio_from_counter(counter_obj, threshold=200): keys = counter_obj.keys() values = counter_obj.values() filtered_values = [counter_obj[k] for k in keys if k > threshold] return float(sum(filtered_values)) / sum(values) def get_show_name(vid_name): """ get tvshow name from vid_name :param vid_name: video clip name :return: tvshow name """ show_list = ["friends", "met", "castle", "house", "grey"] vid_name_prefix = vid_name.split("_")[0] show_name = vid_name_prefix if vid_name_prefix in show_list else "bbt" return show_name import time import logging import os def get_logger(dir, tile): os.makedirs(dir, exist_ok=True) log_file = time.strftime("%Y%m%d_%H%M%S", time.localtime()) log_file = os.path.join(dir, "{}_{}.log".format(log_file, tile)) logger = logging.getLogger() logger.setLevel('DEBUG') BASIC_FORMAT = "%(levelname)s:%(message)s" # DATE_FORMAT = '%Y-%m-%d %H:%M:%S' formatter = logging.Formatter(BASIC_FORMAT) chlr = logging.StreamHandler() chlr.setFormatter(formatter) fhlr = logging.FileHandler(log_file) fhlr.setFormatter(formatter) fhlr.setLevel('INFO') logger.addHandler(chlr) logger.addHandler(fhlr) return logger