File size: 10,601 Bytes
f1256a5
1825f87
7c8c226
1825f87
9f7e997
5bda505
9f7e997
1825f87
5bda505
9f7e997
 
 
92374fe
9f7e997
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1825f87
982d908
9f7e997
 
 
 
 
 
8efbdc5
5bda505
92374fe
5bda505
92374fe
5bda505
92374fe
5bda505
92374fe
 
df5eddd
 
92374fe
 
80d4469
4a30849
a8239d4
91a05da
bc7b550
636c8e6
bc7b550
 
 
 
 
 
 
91a05da
 
929c5d6
ff1e161
 
41be4d8
ff1e161
 
 
 
 
91a05da
ff1e161
 
 
 
 
 
 
636c8e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5d0f61
 
 
 
d752709
b5d0f61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
636c8e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b03cda
 
 
 
 
 
 
1920d52
3b03cda
 
 
 
 
 
89f8def
3b03cda
 
 
 
 
89f8def
3b03cda
 
 
 
89f8def
3b03cda
 
 
 
89f8def
3b03cda
 
 
 
89f8def
3b03cda
 
89f8def
 
 
 
 
3b03cda
89f8def
3b03cda
89f8def
 
 
 
 
 
3b03cda
89f8def
 
3b03cda
89f8def
 
 
 
 
 
 
 
 
 
 
 
3b03cda
89f8def
3b03cda
 
89f8def
 
3b03cda
 
 
 
 
 
 
 
 
 
 
 
 
 
92374fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
---
model_type: DynamicNeuralNetworkForCausalLM
architectures:
- DynamicNeuralNetworkForCausalLM
config:
  adaptation_rate: 0.05
  architectures:
  - DynamicNeuralNetworkForCausalLM
  complexity_metric: null
  desired_improvement_rate: 0.02
  ecosystem_dynamics:
    environmental_volatility: 0.1
    resource_pool: 1
  embedding_dim: 768
  growth_improvement_threshold: 0.01
  hidden_dim: 2048
  initial_neuron_count: 5000
  innovative_growth_net:
    adaptation_rate: 0.05
    complexity_metric: null
    initial_capacity: 250000
    input_size: 2048
  input_dimension: 768
  low_stability_threshold: 0.01
  max_complexity: 10000
  max_neurons: 250000
  max_sequence_length: 200
  min_epochs_before_growth: 5
  model_filename: pytorch_model.bin
  model_type: llama
  num_embeddings: 25000
  pruning_improvement_threshold: 0.005
  some_adaptation_rate: 0.05
  stability_threshold: 0.02
  start_token_index: 2
  transformers_version: 4.34.0
license: apache-2.0
datasets:
- vicgalle/alpaca-gpt4
language:
- en
tags:
- text-generation-inference
metrics:
- accuracy
model: >-
  from transformers import DynamicNeuralNetwork, DynamicNeuralNetworkConfig

  custom_model = DynamicNeuralNetwork.from_pretrained("ayjays132/phillnet",
  config=DynamicNeuralNetworkConfig.from_pretrained("ayjays132/phillnet"))
pipeline_tag: conversational
library_name: transformers
---
---
# Phillnet ๐Ÿš€

๐Ÿš€ Welcome to **Phillnet5b** ๐ŸŒŸ

Dive into the depths of AI with Phillnet, your 5 Billion-parameter titan! This colossal model is not just numbers; it's a labyrinth of knowledge, ready to unlock new realms of possibilities. ๐Ÿง ๐Ÿ’ก

From text generation to complex problem-solving, Phillnet5b is your gateway to unparalleled AI power. Get ready to embark on a journey where every parameter is a pathway to innovation. ๐ŸŒโœจ

Let's revolutionize the world with **Phillnet5b** - where every bit counts and every neuron fires towards the future! ๐Ÿš€๐Ÿ”ฎ

---

## Usage and License

If you intend to use this AI model, I kindly request that you provide appropriate credit to the original author (Phillip Holland) as a gesture of acknowledgment for his effort in developing and sharing this model.

**Please adhere to the following guidelines:**

1. **Give Credit:** When you use this AI model, include a visible and prominent credit to the original author (Phillip Holland) in your project, research paper, or application. You can use the following format:


2. **Review the License:** Carefully read and comply with the terms of the accompanying license (LISCENSE.md). The license outlines the permissions and restrictions for using this AI model. Make sure you understand and adhere to its provisions.

By using this AI model, you acknowledge that you have read and agreed to the terms and conditions set forth in the license.

Thank you for your understanding and cooperation. Together, we can foster responsible and ethical AI development and usage.

---
## Model Overview

Phillnet, a marvel in the realm of language models, is a cutting-edge Dynamic Neural Network designed for advanced natural language processing tasks. Breaking away from conventional models, Phillnet exhibits dynamic adaptation and continuous evolution, showcasing its prowess in continual improvement. Crafted with a custom architecture, Phillnet seamlessly integrates an Innovative Growth Network, ushering in adaptability and innovation.

## Key Features

- **Model Type:** Dynamic Neural Network ๐Ÿง 
- **Embedding Dimension:** 768
- **Hidden Dimension:** 2048
- **Initial Neuron Count:** 5000
- **Input Dimension:** 768
- **Max Neurons:** 250000
- **Max Sequence Length:** 200
- **Num Embeddings:** 25000
- **Model Filename:** pytorch_model.bin
- **Transformers Version:** 4.34.0

## Ecosystem Dynamics ๐ŸŒ

Phillnet thrives in a dynamic ecosystem:

- **Environmental Volatility:** 0.1
- **Resource Pool:** 1.0

## Innovative Growth Network ๐ŸŒฑ

Empowered by an Innovative Growth Network for dynamic adaptation:

- **Adaptation Rate:** 0.05
- **Initial Capacity:** 250000
- **Input Size:** 2048

---

## Hyperparameters Overview

Here's a concise overview of the key hyperparameters used for training the model:

**Training Parameters**
- `max_neurons`: 250,000
- `epochs`: 50
- `clip`: 5
- `patience`: 7
- `adaptation_rate`: 0.05
- `sequence_length`: 200
- `max_sequence_length`: 200
- `weight_decay`: 0.005
- `num_embeddings`: 25,000
- `embedding_dim`: 768
- `hidden_dim`: 2048
- `learning_rate`: 1e-5
- `some_intermediate_size`: 3072

**Additional Parameters**
- `input_dimension`: 768
- `initial_neuron_count`: 5000
- `some_adaptation_rate`: 0.05
- `complexity_metric`: None

**New Parameters**
- `growth_improvement_threshold`: 0.01
- `pruning_improvement_threshold`: 0.005
- `stability_threshold`: 0.02
- `max_complexity`: 10,000
- `low_stability_threshold`: 0.01
- `min_epochs_before_growth`: 5
- `desired_improvement_rate`: 0.02

 ---
 
## Seamless Integration with Hugging Face ๐Ÿค—

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("ayjays132/phillnet")
tokenizer.add_special_tokens({'pad_token': '[PAD]'})

model = AutoModelForCausalLM.from_pretrained("ayjays132/phillnet")

# Example conversation
conversation_history = [
    "Hello, how are you?",
    "I'm doing well, thank you! How about you?",
    "I'm good too. What's new with you?",
    "Not much, just working on some projects. How can I help you today?"
]

# Concatenate the conversation strings
conversation_text = " ".join(conversation_history)

# Tokenize and pad the input
input_ids = tokenizer.encode(conversation_text, return_tensors="pt", padding=True, truncation=True)

# Generate a response
output_ids = model.generate(input_ids, max_length=150, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)

# Decode the generated response
generated_response = tokenizer.decode(output_ids[0], skip_special_tokens=True)

# Print the generated response
print("Generated Response:", generated_response)

## Experience the Magic โœจ

- **Adaptive Learning:** Phillnet dynamically adapts to data patterns, continually enhancing its performance.
- **Innovative Growth:** The model evolves through an Innovative Growth Network, ensuring continuous enhancement.
- **Custom Architecture:** Crafted with a dynamic custom architecture for unparalleled language understanding.

๐ŸŒ **Welcome to the CustomModelLoader.py Odyssey!** ๐ŸŒŸ

Embark on a scholarly quest to unlock the potential of your AI model, "ayjays132/phillnet", with our elegantly crafted script. Designed for the curious minds in AI, this guide is your beacon through the realm of machine learning. Let's dive into the script that's set to revolutionize your AI journey! ๐Ÿš€

### The Script Unveiled: CustomModelLoader.py
This script is your trusty companion in the AI landscape, designed to effortlessly awaken your pre-trained model from its slumber in the Hugging Face Hub. Here's a peek into its core:

```
# CustomModelLoader.py

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def load_custom_model(model_name, device):
    try:
        # Load the model directly from Hugging Face Hub
        model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
        logger.info(f"Model loaded successfully from {model_name}")
        return model
    except Exception as e:
        logger.error(f"An error occurred while loading the model: {e}")
        raise

def load_tokenizer(tokenizer_name):
    try:
        # Load the tokenizer
        tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
        logger.info(f"Tokenizer loaded successfully from {tokenizer_name}")
        return tokenizer
    except Exception as e:
        logger.error(f"An error occurred while loading the tokenizer: {e}")
        raise

def inspect_model_layers(model):
    logger.info("Inspecting model layers and weights...")
    for name, param in model.named_parameters():
        logger.debug(f"Layer: {name} | Size: {param.size()} | Values : {param[:2]}...\n")

if __name__ == "__main__":
    # Define device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    logger.info(f"Using {'CUDA' if device.type == 'cuda' else 'CPU'}")

    # Model name or path in Hugging Face Hub
    model_name = "ayjays132/phillnet"
    tokenizer_name = model_name  # Assuming tokenizer is at the same path

    try:
        # Load the tokenizer and model
        tokenizer = load_tokenizer(tokenizer_name)
        model = load_custom_model(model_name, device)

        # Inspect the model layers and weights
        inspect_model_layers(model)

        # Perform a simple test to verify model weights are loaded correctly (Optional)
        input_ids = tokenizer.encode("Hello, world!", return_tensors="pt").to(device)
        with torch.no_grad():
            outputs = model(input_ids)
        logger.info("Model test run completed successfully.")

        print("Custom model and tokenizer loaded successfully.")

    except Exception as e:
        logger.error(f"An error occurred: {e}")
```

### With `CustomModelLoader.py` at your side, you're not just loading a model; you're unlocking a world of possibilities. Whether you're fine-tuning for accuracy or predicting the unknown, your AI journey is about to get a whole lot smoother. So, scholars and AI enthusiasts, let the odyssey begin! ๐ŸŽฉโœจ

### ๐Ÿ›  How It Works: The Mechanics

1. **Setting the Stage**: Our script begins by checking whether to summon the powers of CUDA or settle in the CPU realm.
2. **Summoning the Model & Tokenizer**: It then gracefully calls upon the `AutoModelForCausalLM` and `AutoTokenizer` from the Hugging Face Hub, ensuring your model and tokenizer are at the ready.
3. **Error Handling Like a Pro**: Should any mischiefs arise, our script is well-armed with try-except blocks to catch and log any spells gone awry, keeping you informed every step of the way.

### ๐ŸŽ“ For the AI Scholars:

This script isn't just a tool; it's a companion designed to make your AI endeavors more productive and enjoyable. Here's how you can harness its power:

- **Plug & Play**: Simply place this script in your project, and it's ready to go. No complicated setup required!
- **Error Logs**: Detailed logging ensures you're always in the know, making troubleshooting a breeze.
- **Flexibility**: Designed with customization in mind, feel free to tweak the script to fit the unique needs of your scholarly pursuits.

---