File size: 1,455 Bytes
a773c0b 96db011 3dba043 96db011 a773c0b 96db011 a773c0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- beans
metrics:
- accuracy
model-index:
- name: vit-base-beans-demo-v5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: beans
type: beans
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 1.0
---
# Fine-Tuned ViT for Beans Leaf Disease Classification
## Model Information
* **Model Name**: VIT_Beans_Leaf_Disease_Classifier
* **Base Model**: Google/ViT-base-patch16-224-in21k
* **Task**: Image Classification (Beans Leaf Disease Classification)
* **Dataset**: Beans leaf dataset with images of diseased and healthy leaves.
## Problem Statement
The goal of this model is to classify leaf images into three categories:
```
{
"angular_leaf_spot": 0,
"bean_rust": 1,
"healthy": 2,
}
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6338c06c107c4835a05699f9/3qwVfVNQSt0KHe8t_OCrT.png)
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1495 | 1.54 | 100 | 0.0910 | 0.9774 |
| 0.0121 | 3.08 | 200 | 0.0155 | 1.0 |
## Framework versions
+ Transformers 4.33.2
+ Pytorch 2.0.1+cu118
+ Datasets 2.14.5
+ Tokenizers 0.13.3
|