File size: 3,129 Bytes
c83620b 3ee0992 c83620b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.9148387096774193
- task:
type: text-classification
name: Text Classification
dataset:
name: clinc_oos
type: clinc_oos
config: small
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.8627272727272727
verified: true
- name: Precision Macro
type: precision
value: 0.861664336839455
verified: true
- name: Precision Micro
type: precision
value: 0.8627272727272727
verified: true
- name: Precision Weighted
type: precision
value: 0.8787483927993249
verified: true
- name: Recall Macro
type: recall
value: 0.9187704194260485
verified: true
- name: Recall Micro
type: recall
value: 0.8627272727272727
verified: true
- name: Recall Weighted
type: recall
value: 0.8627272727272727
verified: true
- name: F1 Macro
type: f1
value: 0.8842101413648463
verified: true
- name: F1 Micro
type: f1
value: 0.8627272727272727
verified: true
- name: F1 Weighted
type: f1
value: 0.8585620882832584
verified: true
- name: loss
type: loss
value: 0.9942931532859802
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-clinc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7760
- Accuracy: 0.9148
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 4.2994 | 1.0 | 318 | 3.3016 | 0.7442 |
| 2.6387 | 2.0 | 636 | 1.8892 | 0.8339 |
| 1.5535 | 3.0 | 954 | 1.1602 | 0.8948 |
| 1.0139 | 4.0 | 1272 | 0.8619 | 0.9084 |
| 0.7936 | 5.0 | 1590 | 0.7760 | 0.9148 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.6
|