File size: 1,677 Bytes
c49a7da
e1d0750
 
 
 
 
c49a7da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
language:
- zgh
- ber
tags:
- OCR
---

<p align="center">
<img src="https://doctr-static.mindee.com/models?id=v0.3.1/Logo_doctr.gif&src=0" width="60%">
</p>

**Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch**

## Task: recognition

https://github.com/mindee/doctr

### Example usage:

```python
>>> from doctr.io import DocumentFile
>>> from doctr.models import ocr_predictor, from_hub

>>> img = DocumentFile.from_images(['<image_path>'])
>>> # Load your model from the hub
>>> model = from_hub('mindee/my-model')

>>> # Pass it to the predictor
>>> # If your model is a recognition model:
>>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large',
>>>                           reco_arch=model,
>>>                           pretrained=True)

>>> # If your model is a detection model:
>>> predictor = ocr_predictor(det_arch=model,
>>>                           reco_arch='crnn_mobilenet_v3_small',
>>>                           pretrained=True)

>>> # Get your predictions
>>> res = predictor(img)
```
### Run Configuration

{
  "arch": "crnn_mobilenet_v3_large",
  "train_path": "train",
  "val_path": "val",
  "train_samples": 1000,
  "val_samples": 20,
  "font": "FreeMono.ttf,FreeSans.ttf,FreeSerif.ttf",
  "min_chars": 1,
  "max_chars": 12,
  "name": "crnn_mobilenet_v3_large_zgh",
  "epochs": 2,
  "batch_size": 64,
  "device": null,
  "input_size": 32,
  "lr": 0.001,
  "weight_decay": 0,
  "workers": 2,
  "resume": null,
  "vocab": "zgh",
  "test_only": false,
  "show_samples": false,
  "wb": true,
  "push_to_hub": true,
  "pretrained": true,
  "sched": "cosine",
  "amp": false,
  "find_lr": false
}