File size: 5,713 Bytes
810b5e1
38258a1
 
 
3c46ffe
 
38258a1
 
 
 
 
 
3c46ffe
 
9d046a7
3c46ffe
810b5e1
38258a1
f1edb79
38258a1
f1edb79
38258a1
f1edb79
5dea472
38258a1
 
 
 
 
f1edb79
38258a1
 
 
 
 
 
ef5df60
 
 
 
38258a1
 
 
 
 
 
 
 
8859b97
 
38258a1
8859b97
 
38258a1
 
 
 
 
 
 
 
 
 
 
 
9d046a7
38258a1
 
5dea472
 
38258a1
5dea472
 
38258a1
 
5dea472
 
 
 
 
 
 
 
 
 
 
38258a1
 
 
 
 
 
 
 
 
 
 
9d046a7
 
38258a1
 
 
 
 
 
 
8859b97
 
38258a1
8859b97
 
38258a1
 
 
 
 
 
 
 
 
 
 
 
9d046a7
38258a1
5dea472
 
38258a1
5dea472
 
38258a1
 
5dea472
 
 
 
 
 
 
 
 
 
 
38258a1
 
 
 
 
 
8859b97
38258a1
 
 
9d046a7
 
38258a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
---
language:
- en
- id
license: cc-by-nc-4.0
library_name: peft
tags:
- qlora
- wizardlm
- uncensored
- instruct
- alpaca
datasets:
- MBZUAI/Bactrian-X
pipeline_tag: text-generation
base_model: nferroukhi/WizardLM-Uncensored-Falcon-7b-sharded-bf16
---
# DukunLM - Indonesian Language Model ๐Ÿง™โ€โ™‚๏ธ

๐Ÿš€ Welcome to the DukunLM repository! DukunLM is an open-source language model trained to generate Indonesian text using the power of AI. DukunLM, meaning "WizardLM" in Indonesian, is here to revolutionize language generation with its massive 7 billion parameters! ๐ŸŒŸ

## Model Details

[![Open in Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1WYhhfvFzQukGzEqWHu3gKmigStJTjWxV?usp=sharing)
- Model: [nferroukhi/WizardLM-Uncensored-Falcon-7b-sharded-bf16](https://huggingface.co/nferroukhi/WizardLM-Uncensored-Falcon-7b-sharded-bf16)
- Base Model: [ehartford/WizardLM-Uncensored-Falcon-7b](https://huggingface.co/ehartford/WizardLM-Uncensored-Falcon-7b)
- Fine-tuned with: [MBZUAI/Bactrian-X (Indonesian subset)](https://huggingface.co/datasets/MBZUAI/Bactrian-X/viewer/id/train)
- Prompt Format: [Alpaca](https://github.com/tatsu-lab/stanford_alpaca)
- Fine-tuned method: [QLoRA](https://github.com/artidoro/qlora)

โš ๏ธ **Warning**: DukunLM is an uncensored model without filters or alignment. Please use it responsibly as it may contain errors, cultural biases, and potentially offensive content. โš ๏ธ

## Installation

To use DukunLM, ensure that PyTorch has been installed and that you have an Nvidia GPU (or use Google Colab). After that you need to install the required dependencies:
```bash
pip install -U git+https://github.com/huggingface/transformers.git
pip install -U git+https://github.com/huggingface/peft.git
pip install -U bitsandbytes==0.39.0
pip install -U einops==0.6.1
```

## How to Use

### Stream Output

```python
import torch
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer, BitsAndBytesConfig, TextStreamer

model = AutoPeftModelForCausalLM.from_pretrained(
    "azale-ai/DukunLM-Uncensored-7B",
    load_in_4bit=True,
    torch_dtype=torch.float32,
    trust_remote_code=True,
    quantization_config=BitsAndBytesConfig(
        load_in_4bit=True,
        llm_int8_threshold=6.0,
        llm_int8_has_fp16_weight=False,
        bnb_4bit_compute_dtype=torch.float16,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
    )
)
tokenizer = AutoTokenizer.from_pretrained("azale-ai/DukunLM-Uncensored-7B")
streamer = TextStreamer(tokenizer)

instruction_prompt = "Jelaskan mengapa air penting bagi kehidupan manusia."
input_prompt = ""

if input_prompt == "":
  text = f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{instruction_prompt}

### Response:
"""
else:
    text = f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{instruction_prompt}

### Input:
{input_prompt}

### Response:
"""

inputs = tokenizer(text, return_tensors="pt").to("cuda")
_ = model.generate(
    inputs=inputs.input_ids,
    streamer=streamer,
    pad_token_id=tokenizer.pad_token_id,
    eos_token_id=tokenizer.eos_token_id,
    max_length=2048, temperature=0.7,
    do_sample=True, top_k=4, top_p=0.95
)
```

### No Stream Output

```python
import torch
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer, BitsAndBytesConfig

model = AutoPeftModelForCausalLM.from_pretrained(
    "azale-ai/DukunLM-Uncensored-7B",
    load_in_4bit=True,
    torch_dtype=torch.float32,
    trust_remote_code=True,
    quantization_config=BitsAndBytesConfig(
        load_in_4bit=True,
        llm_int8_threshold=6.0,
        llm_int8_has_fp16_weight=False,
        bnb_4bit_compute_dtype=torch.float16,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
    )
)
tokenizer = AutoTokenizer.from_pretrained("azale-ai/DukunLM-Uncensored-7B")

instruction_prompt = "Bangun dialog chatbot untuk layanan pelanggan yang ingin membantu pelanggan memesan produk tertentu."
input_prompt = "Produk: Sepatu Nike Air Max"

if input_prompt == "":
  text = f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{instruction_prompt}

### Response:
"""
else:
    text = f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{instruction_prompt}

### Input:
{input_prompt}

### Response:
"""

inputs = tokenizer(text, return_tensors="pt").to("cuda")
_ = model.generate(
    inputs=inputs.input_ids,
    pad_token_id=tokenizer.pad_token_id,
    eos_token_id=tokenizer.eos_token_id,
    max_length=2048, temperature=0.7,
    do_sample=True, top_k=4, top_p=0.95
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## Limitations

- The base model language is English and fine-tuned to Indonesia
- Cultural and contextual biases

## License

DukunLM is licensed under the [Creative Commons NonCommercial (CC BY-NC 4.0) license](https://creativecommons.org/licenses/by-nc/4.0/legalcode).

## Contributing

We welcome contributions to enhance and improve DukunLM. If you have any suggestions or find any issues, please feel free to open an issue or submit a pull request.

## Contact Us

[contact@azale.ai](mailto:contact@azale.ai)