|
import random |
|
import pdb |
|
from einops import rearrange |
|
from typing import List, Optional, Tuple, Union |
|
import os |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss, BCEWithLogitsLoss, MSELoss |
|
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast |
|
import transformers.models.opt.modeling_opt as modeling_opt |
|
from transformers.models.opt.modeling_opt\ |
|
import OPTDecoderLayer, OPTPreTrainedModel, OPTConfig |
|
from transformers import ViTModel |
|
|
|
try: |
|
from transformers.models.opt.modeling_opt import _prepare_4d_causal_attention_mask |
|
except: |
|
_prepare_4d_causal_attention_mask = None |
|
|
|
from .utils import exists, freeze_all_layers_, unfreeze_all_layers_ |
|
from .flamingo_pytorch import GatedCrossAttentionBlock, PerceiverResampler |
|
from .configuration_flamingo import FlamingoConfig |
|
|
|
|
|
class OPTLearnedPositionalEmbedding(nn.Embedding): |
|
""" |
|
This module learns positional embeddings up to a fixed maximum size. |
|
""" |
|
|
|
def __init__(self, num_embeddings: int, embedding_dim: int): |
|
|
|
|
|
self.offset = 2 |
|
super().__init__(num_embeddings + self.offset, embedding_dim) |
|
|
|
def forward(self, attention_mask: torch.LongTensor, past_key_values_length: int = 0): |
|
"""`input_ids_shape` is expected to be [bsz x seqlen].""" |
|
attention_mask = attention_mask.long() |
|
|
|
|
|
positions = torch.cumsum(attention_mask, dim=1) |
|
positions = (positions.type_as(attention_mask) * attention_mask).long() - 1 |
|
|
|
|
|
positions = positions[:, past_key_values_length:] |
|
|
|
return super().forward(positions + self.offset) |
|
|
|
|
|
class OPTDecoder(modeling_opt.OPTDecoder): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OPTDecoderLayer`] |
|
Args: |
|
config: OPTConfig |
|
embed_tokens (nn.Embedding): output embedding |
|
""" |
|
|
|
def __init__(self, config: OPTConfig): |
|
OPTPreTrainedModel.__init__(self, config) |
|
self.dropout = config.dropout |
|
self.layerdrop = config.layerdrop |
|
self.padding_idx = config.pad_token_id |
|
self.max_target_positions = config.max_position_embeddings |
|
self.vocab_size = config.vocab_size |
|
self.media_token_id = config.media_token_id |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.word_embed_proj_dim, self.padding_idx) |
|
self.embed_positions = OPTLearnedPositionalEmbedding(config.max_position_embeddings, config.hidden_size) |
|
|
|
if config.word_embed_proj_dim != config.hidden_size: |
|
self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False) |
|
else: |
|
self.project_out = None |
|
|
|
if config.word_embed_proj_dim != config.hidden_size: |
|
self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False) |
|
else: |
|
self.project_in = None |
|
|
|
|
|
|
|
|
|
if config.do_layer_norm_before and not config._remove_final_layer_norm: |
|
self.final_layer_norm = nn.LayerNorm(config.hidden_size) |
|
else: |
|
self.final_layer_norm = None |
|
|
|
dim_head = config.hidden_size // config.num_attention_heads |
|
if not config.id_perceiver: |
|
self.perceiver_resampler = PerceiverResampler( |
|
dim=config.hidden_size, |
|
depth=config.perceiver_depth, |
|
dim_head=dim_head, |
|
heads=config.num_attention_heads, |
|
num_latents=config.perceiver_num_latents, |
|
inp_dim=config.inp_dim, |
|
) |
|
else: |
|
if config.inp_dim is None: |
|
self.perceiver_resampler = nn.Identity() |
|
else: |
|
self.perceiver_resampler = nn.Linear( |
|
config.inp_dim, config.hidden_size, |
|
bias=False) |
|
self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gated_attn_layers = nn.ModuleList( |
|
[GatedCrossAttentionBlock( |
|
dim=config.hidden_size, dim_head=dim_head, heads=config.num_attention_heads, |
|
only_attend_immediate_media=config.only_attend_immediate_media)\ |
|
if not (ind % config.cross_attn_every) else None \ |
|
for ind in range(config.num_hidden_layers)]) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
|
|
if not config.finetune_LM: |
|
freeze_all_layers_(self) |
|
unfreeze_all_layers_(self.perceiver_resampler) |
|
[unfreeze_all_layers_(cross_attn) for cross_attn in self.gated_attn_layers if exists(cross_attn)] |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
pixel_values=None, |
|
image_embeds=None |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you |
|
provide it. |
|
Indices can be obtained using [`OPTTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
[What are attention masks?](../glossary#attention-mask) |
|
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: |
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of |
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the |
|
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those |
|
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of |
|
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. |
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors |
|
than the model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
batch, device = input_ids.shape[0], input_ids.device |
|
|
|
flamingo_mode = exists(pixel_values) or exists(image_embeds) |
|
|
|
|
|
if flamingo_mode: |
|
media_locations = input_ids == self.media_token_id |
|
|
|
assert not (exists(pixel_values) and exists(image_embeds)) |
|
|
|
|
|
|
|
|
|
if exists(pixel_values): |
|
assert exists(self.img_encoder), 'img_encoder must be passed in for automatic image encoding' |
|
if len(pixel_values.shape) == 4: |
|
pixel_values = torch.unsqueeze(pixel_values, 1) |
|
pixel_values = rearrange(pixel_values, 'b t ... -> (b t) ...') |
|
|
|
with torch.no_grad(): |
|
if getattr(self.img_encoder, 'vision_model', None) is not None: |
|
image_outputs = self.img_encoder.vision_model( |
|
pixel_values=pixel_values, |
|
output_hidden_states=True, return_dict=True) |
|
else: |
|
image_outputs = self.img_encoder( |
|
pixel_values=pixel_values, |
|
output_hidden_states=True, return_dict=True) |
|
|
|
image_embeds = image_outputs['last_hidden_state'] |
|
image_embeds = rearrange(image_embeds, '(b t) ... -> b t ...', b = batch) |
|
|
|
if exists(image_embeds): |
|
image_embeds = self.perceiver_resampler(image_embeds) |
|
|
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(inputs_embeds.shape[:2], dtype=torch.bool, device=inputs_embeds.device) |
|
pos_embeds = self.embed_positions(attention_mask, past_key_values_length) |
|
|
|
if _prepare_4d_causal_attention_mask is None: |
|
attention_mask = self._prepare_decoder_attention_mask( |
|
attention_mask, input_shape, inputs_embeds, past_key_values_length |
|
) |
|
else: |
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, input_shape, inputs_embeds, past_key_values_length |
|
) |
|
|
|
if self.project_in is not None: |
|
inputs_embeds = self.project_in(inputs_embeds) |
|
|
|
hidden_states = inputs_embeds + pos_embeds |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
|
|
for attn_mask, mask_name in zip([head_mask], ["head_mask"]): |
|
if attn_mask is not None: |
|
if attn_mask.size()[0] != (len(self.layers)): |
|
raise ValueError( |
|
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" |
|
f" {head_mask.size()[0]}." |
|
) |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
dropout_probability = random.uniform(0, 1) |
|
if self.training and (dropout_probability < self.layerdrop): |
|
continue |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
flamingo_cross_attn = self.gated_attn_layers[idx] |
|
if exists(flamingo_cross_attn) and exists(image_embeds): |
|
hidden_states = flamingo_cross_attn( |
|
hidden_states, |
|
image_embeds, |
|
media_locations = media_locations |
|
) |
|
|
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
layer_head_mask=(head_mask[idx] if head_mask is not None else None), |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
if self.final_layer_norm is not None: |
|
hidden_states = self.final_layer_norm(hidden_states) |
|
|
|
if self.project_out is not None: |
|
hidden_states = self.project_out(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class OPTModel(modeling_opt.OPTModel): |
|
def __init__(self, config: OPTConfig): |
|
OPTPreTrainedModel.__init__(self, config) |
|
self.decoder = OPTDecoder(config) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
class OPTForCausalLM(modeling_opt.OPTForCausalLM): |
|
_keys_to_ignore_on_load_missing = [r"lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
OPTPreTrainedModel.__init__(self, config) |
|
self.model = OPTModel(config) |
|
|
|
|
|
self.lm_head = nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def set_default_if_nonexist(config, key, value): |
|
if getattr(config, key, None) is None: |
|
setattr(config, key, value) |
|
return config |
|
|
|
|
|
def setup_default_flamingo_configs(config): |
|
set_default_if_nonexist(config, 'perceiver_depth', 2) |
|
set_default_if_nonexist(config, 'perceiver_num_latents', 64) |
|
set_default_if_nonexist(config, 'cross_attn_every', 3) |
|
set_default_if_nonexist(config, 'only_attend_immediate_media', True) |
|
set_default_if_nonexist(config, 'media_token_id', 50265) |
|
set_default_if_nonexist(config, 'inp_dim', 768) |
|
set_default_if_nonexist(config, 'finetune_LM', True) |
|
set_default_if_nonexist(config, 'id_perceiver', False) |
|
return config |
|
|
|
|
|
class FlamingoForCausalLM(modeling_opt.OPTForCausalLM): |
|
_keys_to_ignore_on_load_missing = [ |
|
r"lm_head.weight", |
|
] |
|
config_class = FlamingoConfig |
|
|
|
def __init__(self, config): |
|
OPTPreTrainedModel.__init__(self, config) |
|
config = setup_default_flamingo_configs(config) |
|
self.model = OPTModel(config) |
|
|
|
|
|
self.lm_head = nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
self.model.decoder.img_encoder = None |
|
self.loss_fct = CrossEntropyLoss() |
|
dino_model = ViTModel.from_pretrained("facebook/dino-vitb16") |
|
self.setup_vis_encoder(dino_model) |
|
|
|
def setup_vis_encoder(self, img_encoder): |
|
self.model.decoder.img_encoder = img_encoder |
|
freeze_all_layers_(img_encoder) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
*args, **kwargs) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you |
|
provide it. |
|
Indices can be obtained using [`OPTTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
[What are attention masks?](../glossary#attention-mask) |
|
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: |
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of |
|
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional |
|
tensors are only required when the model is used as a decoder in a Sequence to Sequence model. |
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the |
|
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those |
|
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of |
|
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. |
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors |
|
than the model's internal embedding lookup matrix. |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
Returns: |
|
Example: |
|
```python |
|
>>> from transformers import GPT2Tokenizer, OPTForCausalLM |
|
>>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m") |
|
>>> tokenizer = GPT2Tokenizer.from_pretrained("facebook/opt-350m") |
|
>>> prompt = "Hey, are you consciours? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model.decoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
*args, **kwargs) |
|
|
|
logits = self.lm_head(outputs[0]).contiguous() |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss = self.loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class FlamingoForSequenceClassification(OPTPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [ |
|
r"score.weight", |
|
] |
|
|
|
def __init__(self, config: OPTConfig): |
|
OPTPreTrainedModel.__init__(self, config) |
|
config = setup_default_flamingo_configs(config) |
|
self.num_labels = config.num_labels |
|
self.model = OPTModel(config) |
|
|
|
|
|
self.score = nn.Linear(config.word_embed_proj_dim, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
self.model.decoder.img_encoder = None |
|
self.loss_fct = CrossEntropyLoss() |
|
dino_model = ViTModel.from_pretrained("facebook/dino-vitb16") |
|
self.setup_vis_encoder(dino_model) |
|
|
|
def setup_vis_encoder(self, img_encoder): |
|
self.model.decoder.img_encoder = img_encoder |
|
freeze_all_layers_(img_encoder) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
*args, **kwargs) -> Union[Tuple, SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model.decoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
*args, **kwargs) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size, sequence_length = input_ids.shape[:2] |
|
else: |
|
batch_size, sequence_length = inputs_embeds.shape[:2] |
|
|
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
|
|
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 |
|
sequence_lengths = sequence_lengths % input_ids.shape[-1] |
|
sequence_lengths = sequence_lengths.to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
|
|
|
|
|
|
|
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
|
|
if not return_dict: |
|
output = (pooled_logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def get_input_embeddings(self): |
|
return self.model.decoder.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.decoder.embed_tokens = value |
|
|