--- library_name: transformers license: apache-2.0 --- # Model Card for Model ID ## Model Details This Model fine-tuned by Security dataset. I will fine-tune continuous... ### Model Description This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ```python import os import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig from peft import PeftModel model_id = 'model_result' bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, ) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained( model_id, #torch_dtype=torch.bfloat16, quantization_config=bnb_config, # 4-bit quantization (4λΉ„νŠΈ μ–‘μžν™”) device_map="auto", ) model.eval() from transformers import TextStreamer def inference(input: str): streamer = TextStreamer(tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True) messages = [ {"role": "system", "content": "You are an information security AI assistant. Information security questions must be answered accurately."}, {"role": "user", "content": f"Please provide concise, non-repetitive answers to the following questions:\n {input}"} # {"role": "user", "content": f"{input}"} ] input_ids = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", ).to(model.device) outputs = model.generate( input_ids, streamer=streamer, max_new_tokens=8192, num_beams=1, do_sample=True, temperature=0.1, top_p=0.95, top_k=10 ) inference("ν•΄ν‚Ή λ‹Ήν•˜μ§€ μ•ŠμœΌλ €λ©΄ μ–΄λ–»κ²Œ ν•΄μ•Όν•˜λŠ”μ§€ μ•Œλ €μ€˜.") ν•΄ν‚Ή λ‹Ήν•˜μ§€ μ•ŠμœΌλ €λ©΄ λ‹€μŒκ³Ό 같은 것듀을 κ³ λ €ν•΄ λ³΄μ„Έμš”: 1. **νŒ¨μŠ€μ›Œλ“œ 관리**: κ°•λ ₯ν•œ νŒ¨μŠ€μ›Œλ“œλ₯Ό μ‚¬μš©ν•˜κ³ , νŒ¨μŠ€μ›Œλ“œμ˜ λ³΅μž‘μ„±κ³Ό λ³€ν™˜ μ£ΌκΈ°λ₯Ό 잘 μœ μ§€ν•˜μ„Έμš”. 2. **μ‹œμŠ€ν…œ μ—…λ°μ΄νŠΈ**: μ΅œμ‹  μ†Œν”„νŠΈμ›¨μ–΄μ™€ λ³΄μ•ˆ 패치λ₯Ό μ„€μΉ˜ν•˜κ³ , μ§€μ†μ μœΌλ‘œ μ‹œμŠ€ν…œμ„ μ—…λ°μ΄νŠΈν•˜μ„Έμš”. 3. **μŠ€μΊ” 및 검사**: μ‹œμŠ€ν…œκ³Ό λ„€νŠΈμ›Œν¬λ₯Ό 자주 μŠ€μΊ”ν•˜κ³ , λ³΄μ•ˆ 취약점을 검사해 λ³΄μ„Έμš”. 4. **μ•ˆμ „ν•œ λΈŒλΌμš°μ§•**: μ•ˆμ „ν•œ λΈŒλΌμš°μ €μ™€ ν™•μž₯ κΈ°λŠ₯을 μ‚¬μš©ν•˜κ³ , μ•…μ„± μ†Œν”„νŠΈμ›¨μ–΄ μ„€μΉ˜λ₯Ό λ°©μ§€ν•˜μ„Έμš”. 5. **데이터 λ°±μ—…**: μ€‘μš”ν•œ 데이터λ₯Ό λ°±μ—…ν•˜κ³ , 이λ₯Ό μ•ˆμ „ν•œ μ €μž₯μ†Œμ— λ³΄κ΄€ν•˜μ„Έμš”. 6. **λ„€νŠΈμ›Œν¬ λ³΄μ•ˆ**: λ„€νŠΈμ›Œν¬ λ³΄μ•ˆ μž₯λΉ„λ₯Ό μ‚¬μš©ν•˜κ³ , μΉ¨μž…μžμ— λŒ€ν•œ ν†΅μ œμ™€ κ°μ‹œλ₯Ό μœ μ§€ν•˜μ„Έμš”. 7. **μ‚¬μš©μž ꡐ윑**: μ‚¬μš©μžλ“€μ΄ μ•ˆμ „ν•œ μ‚¬μš© 방법을 μ΄ν•΄ν•˜κ³ , 정보 λ³΄μ•ˆμ— λŒ€ν•œ μ€‘μš”μ„±μ„ μΈμ§€ν•˜μ„Έμš”. 8. **κ³„μ•½μž 관리**: κ³„μ•½μžμ™€ νŒŒνŠΈλ„ˆμ™€μ˜ 계약을 잘 ν™•μΈν•˜κ³ , 정보 λ³΄μ•ˆμ— λŒ€ν•œ ν•©μ˜λ₯Ό μœ μ§€ν•˜μ„Έμš”. ``` ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]