{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7c98b501c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689003974585485201, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAaTg74d0yc/xkzmPSzQSr7YC9O8oR6gPQAAAAAAAAAAmmEaOxSop7oC5T27HqVwtsKyd7pDLFo6AACAPwAAgD+64Fg+ozAePYtQ+jmgam04ubG1PhWtsLUAAIA/AACAP6ZR2j0fNfu56XqyvCKpAzQlSgK7klPDswAAAAAAAIA/AD87PfbMFbp/T5Y8isvpuIvEYLpoNt63AACAPwAAgD9aZIo9ajUsPxa8ATzab6K++s2QPJ9muzwAAAAAAAAAAIDCPL3DWW+6MWypu/NqDDZwI0y79vfBOgAAgD8AAIA/mlk8O1ybYbrAXJi7nmhMtnWBsTq1WK46AACAPwAAgD8AKK87w2UYukXknbpGkLs1iMgiO6KetzkAAIA/AACAPzPP9zzDsVC6EhF3OokR+zPSOa667qiPuQAAgD8AAIA/mjoRPYXzkLnuoNs4I7oHNteTVrv34wC4AACAPwAAgD9t82s+4QEAP/H2m716zki+JD7VPZc8JLsAAAAAAAAAAJrsML2PBnO6gQaBOk5F4rV+SS861wmXuQAAgD8AAIA/rbUEPh/d+7n94Gu8jzuSuWNT4juyjoG6AACAPwAAgD+aTG69KeB7upgA7TtsnTUzoue7uo7nUzMAAIA/AACAP0C7hz2Fg5S5ToFDO2SCLDa/3Vi6uzhkugAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGNZrsa86FOMAWyUTegDjAF0lEdAnBjzqOcUd3V9lChoBkdAYUqLdepn6GgHTegDaAhHQJwdPlbNbC91fZQoaAZHQGI9oMKCxu9oB03oA2gIR0CcIF5nUUfxdX2UKGgGR0BfjrJfYzzmaAdN6ANoCEdAnCOWs/6frnV9lChoBkdAZCiksz2vjmgHTegDaAhHQJwl0zsQd0d1fZQoaAZHQF9nmU4aP0ZoB03oA2gIR0CcLLPkaMrFdX2UKGgGR0Bgr7MHKOktaAdN6ANoCEdAnDSLb1yvLXV9lChoBkdAZs+JtSAH3WgHTegDaAhHQJw0tfkWAPN1fZQoaAZHQGNNzMaCL/FoB03oA2gIR0CcNnQ/X5FgdX2UKGgGR0BjIrNUwSJ1aAdN6ANoCEdAnDdbs4T9KnV9lChoBkdAX36vTw2ETWgHTegDaAhHQJw30ZtNzsB1fZQoaAZHQGOczvZyuIRoB03oA2gIR0CcOOndweeWdX2UKGgGR0AVr6SDAaegaAdNOgFoCEdAnDwfJJXhfnV9lChoBkdAYpCh6jWTYGgHTegDaAhHQJw+G6NEPUd1fZQoaAZHQGY+spobn5loB03oA2gIR0CcRNSaEzwddX2UKGgGR0BflzySV4X5aAdN6ANoCEdAnEXU1dgOSXV9lChoBkdAZFcVs1sLv2gHTegDaAhHQJxjqTTvy9V1fZQoaAZHQGLV+8oQWepoB03oA2gIR0CccUqBmPHUdX2UKGgGR0BlO7Ikqto0aAdN6ANoCEdAnHZ6MFUyYXV9lChoBkdAZixbNbC79WgHTegDaAhHQJx5mgWac7R1fZQoaAZHQF0OTYNAkcFoB03oA2gIR0CcfxqU/wAmdX2UKGgGR0BkMDmOlwcYaAdN6ANoCEdAnIRe5e7cwnV9lChoBkdAZsfv0AcT8GgHTegDaAhHQJyKQxFiKBN1fZQoaAZHQGWCkVWS2YxoB03oA2gIR0CcimNRFZxJdX2UKGgGR0BiGFa2WpqAaAdN6ANoCEdAnIu3S4OMEXV9lChoBkdAXTA2/BWPtGgHTegDaAhHQJyMa/i5uqF1fZQoaAZHQF7pJBgNPP9oB03oA2gIR0CcjMDx9XtCdX2UKGgGR0BjINRzijtYaAdN6ANoCEdAnI2OPikwe3V9lChoBkdAYjyImgJ1JWgHTegDaAhHQJyQwdCE6DJ1fZQoaAZHQGu/rpaA4GVoB002AWgIR0Cckld69kBkdX2UKGgGR0BjI+4gA6uGaAdN6ANoCEdAnJKy13MY/HV9lChoBkdAZLIoS+QEIWgHTegDaAhHQJyZGQbMott1fZQoaAZHQGDirncL0BhoB03oA2gIR0CcmgMRYigTdX2UKGgGR0BlNQhStNi6aAdN6ANoCEdAnLviOinHenV9lChoBkdAYSFLdN34bmgHTegDaAhHQJzFwK8cuJ11fZQoaAZHQGNrrApKBd5oB03oA2gIR0CcyftJFspHdX2UKGgGR0Bl6cqhDgIhaAdN6ANoCEdAnM0Ra9sabXV9lChoBkdAZjGZpBX0XmgHTegDaAhHQJzYhe/pMYd1fZQoaAZHQGXlxDst03hoB03oA2gIR0Cc4O2ys0YTdX2UKGgGR0Bh4LgCOmzjaAdN6ANoCEdAnOEaoybhFXV9lChoBkdAYwGKfFrEcmgHTegDaAhHQJzi6g6EJ0J1fZQoaAZHQGFOcstkFwFoB03oA2gIR0Cc4+Pacqe9dX2UKGgGR0BjhFDKHO8kaAdN6ANoCEdAnORXVsk6cXV9lChoBkdAZL6eii7Ci2gHTegDaAhHQJzlVNDc/MZ1fZQoaAZHQGQK+TeO4oZoB03oA2gIR0Cc6P1IiC8OdX2UKGgGR0BbxW3KB/ZvaAdN6ANoCEdAnOpoW56MSHV9lChoBkdAXoOUr08NhGgHTegDaAhHQJzqt50KZ2J1fZQoaAZHQGOTyaNMoMNoB03oA2gIR0Cc8LTUiILxdX2UKGgGR0Bls06HTI/8aAdN6ANoCEdAnPGchPj4pXV9lChoBkdAFlvm5lOGkGgHTSUBaAhHQJzxxVsDW9V1fZQoaAZHQGGth+vyLAJoB03oA2gIR0CdDTfA9FF2dX2UKGgGR0BYPqCQLeANaAdN6ANoCEdAnRk+ndfsu3V9lChoBkdAYZyrUb1h9mgHTegDaAhHQJ0fh3/xUed1fZQoaAZHQGawS7wrlNloB03oA2gIR0CdI6qXnhbXdX2UKGgGR0Beye8wpON6aAdN6ANoCEdAnS6N0/4ZdnV9lChoBkdAYgj/gBLf12gHTegDaAhHQJ00f1lGwzN1fZQoaAZHQGUBAgPmPo5oB03oA2gIR0CdNfPiT+vRdX2UKGgGR0BatcEJSiudaAdN6ANoCEdAnTapQxesxXV9lChoBkdAY25tD2Jzk2gHTegDaAhHQJ02/D63y7R1fZQoaAZHQGVXVxKg7HRoB03oA2gIR0CdN7Z5AyEddX2UKGgGR0Bgz5UT+NtJaAdN6ANoCEdAnTq7PY4ACHV9lChoBkdAYzIQGwA2h2gHTegDaAhHQJ08QySFGod1fZQoaAZHQGPf8V58jRloB03oA2gIR0CdPJvIfbKzdX2UKGgGR0BjkmPLgXMyaAdN6ANoCEdAnULqbvw3HnV9lChoBkdAZYLFfAsTWWgHTegDaAhHQJ1DxpnHvMN1fZQoaAZHQGOpFWGRFJBoB03oA2gIR0CdQ+7w8W9EdX2UKGgGR0BiS8U0vXbuaAdN6ANoCEdAnWTUQK8cuXV9lChoBkdAZGZycTakAWgHTegDaAhHQJ1ubBbfP5Z1fZQoaAZHQGANuhK15SpoB03oA2gIR0CdcrNJvo/zdX2UKGgGR0BjPMDbJwKjaAdN6ANoCEdAnXXMK5TZQHV9lChoBkdAYaF1OCXhO2gHTegDaAhHQJ2A/GuLaVV1fZQoaAZHQEl+oNNJvpBoB0vRaAhHQJ2ENBw++uh1fZQoaAZHQGUE1+iJwbVoB03oA2gIR0CdiDHryDqXdX2UKGgGR0BkkUtTUAktaAdN6ANoCEdAnYoqQRwqAnV9lChoBkdAZUgo0hvBJ2gHTegDaAhHQJ2LMu27Wd51fZQoaAZHQGIyCW3Sa3JoB03oA2gIR0Cdi60eEIw/dX2UKGgGR0Be+nbEgntwaAdN6ANoCEdAnYzKYqoZRHV9lChoBkdAZYrp9qk/KWgHTegDaAhHQJ2RHXUYsNF1fZQoaAZHQGYTc+A3DN1oB03oA2gIR0Cdk1H7gsK9dX2UKGgGR0BeTrBO58SgaAdN6ANoCEdAnZPYTsY2sXV9lChoBkdAYxNOhTOxB2gHTegDaAhHQJ2bjzBhx5t1fZQoaAZHQF1DgvUSZjRoB03oA2gIR0CdnHXwb2lEdX2UKGgGR0Bi0QhW5paiaAdN6ANoCEdAnZyhP9DQaHV9lChoBkdAXkjKGL1mJ2gHTegDaAhHQJ24VUgjhUB1fZQoaAZHQF/nVWS2Yv5oB03oA2gIR0Cdw3beuV5bdX2UKGgGR0BlAFD8cdYGaAdN6ANoCEdAncnMKb8WK3V9lChoBkdAUM66mO2iL2gHS8loCEdAndq0RFqi5HV9lChoBkdAWYltVJcxCmgHTegDaAhHQJ3bSl+EytV1fZQoaAZHQGFPrwe/5+JoB03oA2gIR0Cd3oV+qioLdX2UKGgGR0BkJyLS/j82aAdN6ANoCEdAneE79ETg23V9lChoBkdAZBGDbrTpgWgHTegDaAhHQJ3iluR9w3p1fZQoaAZHQGZb6oVEd/9oB03oA2gIR0Cd4zeMyad+dX2UKGgGR0BjMNMPBi1BaAdN6ANoCEdAneOKLGaQWHV9lChoBkdAZisknkT6BWgHTegDaAhHQJ3kNonKGL11fZQoaAZHQGBT5M+NcW1oB03oA2gIR0Cd5uMdtEXtdX2UKGgGR0Bkt+QZGax5aAdN6ANoCEdAnegxk7Omi3V9lChoBkdAYV2lANXo1WgHTegDaAhHQJ3oe3fAKv51fZQoaAZHQF7ELux8lX1oB03oA2gIR0Cd7ghA4XGfdX2UKGgGR0BfHpFgDzRQaAdN6ANoCEdAne7ZVjqfOHV9lChoBkdAYMGIYWLxZ2gHTegDaAhHQJ3u/7SApa11ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}