End of training
Browse files
README.md
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: cc-by-nc-sa-4.0
|
4 |
+
base_model: microsoft/layoutlmv2-base-uncased
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: layoutlmv2-base-uncased_finetuned_docvqa
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# layoutlmv2-base-uncased_finetuned_docvqa
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 4.9512
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 5e-05
|
39 |
+
- train_batch_size: 4
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 20
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:-------:|:----:|:---------------:|
|
50 |
+
| 5.2951 | 0.2212 | 50 | 4.7074 |
|
51 |
+
| 4.5271 | 0.4425 | 100 | 4.1032 |
|
52 |
+
| 4.1303 | 0.6637 | 150 | 3.9369 |
|
53 |
+
| 3.8633 | 0.8850 | 200 | 3.5651 |
|
54 |
+
| 3.4747 | 1.1062 | 250 | 3.6489 |
|
55 |
+
| 3.4294 | 1.3274 | 300 | 3.1484 |
|
56 |
+
| 3.1319 | 1.5487 | 350 | 2.9161 |
|
57 |
+
| 2.8258 | 1.7699 | 400 | 2.8137 |
|
58 |
+
| 2.6171 | 1.9912 | 450 | 2.9083 |
|
59 |
+
| 2.4222 | 2.2124 | 500 | 3.0206 |
|
60 |
+
| 2.1271 | 2.4336 | 550 | 2.6056 |
|
61 |
+
| 1.9083 | 2.6549 | 600 | 2.3721 |
|
62 |
+
| 1.9685 | 2.8761 | 650 | 2.3992 |
|
63 |
+
| 1.6307 | 3.0973 | 700 | 2.7301 |
|
64 |
+
| 1.4481 | 3.3186 | 750 | 2.3406 |
|
65 |
+
| 1.4984 | 3.5398 | 800 | 2.6880 |
|
66 |
+
| 1.7125 | 3.7611 | 850 | 2.4609 |
|
67 |
+
| 1.3863 | 3.9823 | 900 | 2.3533 |
|
68 |
+
| 1.2462 | 4.2035 | 950 | 2.5440 |
|
69 |
+
| 1.0761 | 4.4248 | 1000 | 2.7272 |
|
70 |
+
| 1.1144 | 4.6460 | 1050 | 1.9797 |
|
71 |
+
| 0.9787 | 4.8673 | 1100 | 2.4466 |
|
72 |
+
| 0.8171 | 5.0885 | 1150 | 2.9085 |
|
73 |
+
| 0.8736 | 5.3097 | 1200 | 2.9959 |
|
74 |
+
| 0.9349 | 5.5310 | 1250 | 2.3175 |
|
75 |
+
| 0.7439 | 5.7522 | 1300 | 3.0023 |
|
76 |
+
| 0.7007 | 5.9735 | 1350 | 3.1554 |
|
77 |
+
| 0.4858 | 6.1947 | 1400 | 3.3196 |
|
78 |
+
| 0.7693 | 6.4159 | 1450 | 3.3589 |
|
79 |
+
| 0.4525 | 6.6372 | 1500 | 3.1226 |
|
80 |
+
| 0.442 | 6.8584 | 1550 | 3.5817 |
|
81 |
+
| 0.5321 | 7.0796 | 1600 | 3.4303 |
|
82 |
+
| 0.4044 | 7.3009 | 1650 | 3.5700 |
|
83 |
+
| 0.3062 | 7.5221 | 1700 | 4.0335 |
|
84 |
+
| 0.5116 | 7.7434 | 1750 | 3.6335 |
|
85 |
+
| 0.3481 | 7.9646 | 1800 | 3.5987 |
|
86 |
+
| 0.2781 | 8.1858 | 1850 | 4.0488 |
|
87 |
+
| 0.3054 | 8.4071 | 1900 | 3.4694 |
|
88 |
+
| 0.3572 | 8.6283 | 1950 | 3.7605 |
|
89 |
+
| 0.3524 | 8.8496 | 2000 | 3.9977 |
|
90 |
+
| 0.3551 | 9.0708 | 2050 | 3.7106 |
|
91 |
+
| 0.1455 | 9.2920 | 2100 | 3.8854 |
|
92 |
+
| 0.3655 | 9.5133 | 2150 | 3.6476 |
|
93 |
+
| 0.348 | 9.7345 | 2200 | 3.5709 |
|
94 |
+
| 0.299 | 9.9558 | 2250 | 3.6914 |
|
95 |
+
| 0.1781 | 10.1770 | 2300 | 3.7616 |
|
96 |
+
| 0.1812 | 10.3982 | 2350 | 3.7328 |
|
97 |
+
| 0.3197 | 10.6195 | 2400 | 4.3628 |
|
98 |
+
| 0.2139 | 10.8407 | 2450 | 4.3765 |
|
99 |
+
| 0.0266 | 11.0619 | 2500 | 4.6882 |
|
100 |
+
| 0.0659 | 11.2832 | 2550 | 4.5060 |
|
101 |
+
| 0.2312 | 11.5044 | 2600 | 4.1473 |
|
102 |
+
| 0.1366 | 11.7257 | 2650 | 4.2983 |
|
103 |
+
| 0.2264 | 11.9469 | 2700 | 4.2400 |
|
104 |
+
| 0.165 | 12.1681 | 2750 | 4.0799 |
|
105 |
+
| 0.0443 | 12.3894 | 2800 | 4.2081 |
|
106 |
+
| 0.178 | 12.6106 | 2850 | 4.0656 |
|
107 |
+
| 0.2517 | 12.8319 | 2900 | 4.2621 |
|
108 |
+
| 0.1208 | 13.0531 | 2950 | 4.6150 |
|
109 |
+
| 0.0767 | 13.2743 | 3000 | 4.6056 |
|
110 |
+
| 0.0789 | 13.4956 | 3050 | 4.2637 |
|
111 |
+
| 0.0492 | 13.7168 | 3100 | 4.3896 |
|
112 |
+
| 0.1782 | 13.9381 | 3150 | 4.3427 |
|
113 |
+
| 0.0968 | 14.1593 | 3200 | 4.5666 |
|
114 |
+
| 0.0287 | 14.3805 | 3250 | 4.6159 |
|
115 |
+
| 0.0516 | 14.6018 | 3300 | 4.4566 |
|
116 |
+
| 0.1008 | 14.8230 | 3350 | 4.5481 |
|
117 |
+
| 0.052 | 15.0442 | 3400 | 4.6010 |
|
118 |
+
| 0.0334 | 15.2655 | 3450 | 4.6442 |
|
119 |
+
| 0.027 | 15.4867 | 3500 | 4.7174 |
|
120 |
+
| 0.0791 | 15.7080 | 3550 | 4.5374 |
|
121 |
+
| 0.147 | 15.9292 | 3600 | 4.6980 |
|
122 |
+
| 0.1186 | 16.1504 | 3650 | 4.5936 |
|
123 |
+
| 0.0373 | 16.3717 | 3700 | 4.6215 |
|
124 |
+
| 0.0445 | 16.5929 | 3750 | 4.4737 |
|
125 |
+
| 0.0325 | 16.8142 | 3800 | 4.6176 |
|
126 |
+
| 0.0842 | 17.0354 | 3850 | 4.7082 |
|
127 |
+
| 0.0097 | 17.2566 | 3900 | 4.7821 |
|
128 |
+
| 0.0707 | 17.4779 | 3950 | 4.7606 |
|
129 |
+
| 0.0583 | 17.6991 | 4000 | 4.8275 |
|
130 |
+
| 0.0222 | 17.9204 | 4050 | 4.8638 |
|
131 |
+
| 0.0413 | 18.1416 | 4100 | 4.8912 |
|
132 |
+
| 0.0097 | 18.3628 | 4150 | 4.9439 |
|
133 |
+
| 0.0075 | 18.5841 | 4200 | 4.9960 |
|
134 |
+
| 0.0735 | 18.8053 | 4250 | 4.9482 |
|
135 |
+
| 0.0821 | 19.0265 | 4300 | 5.0201 |
|
136 |
+
| 0.0254 | 19.2478 | 4350 | 4.9772 |
|
137 |
+
| 0.1105 | 19.4690 | 4400 | 4.9629 |
|
138 |
+
| 0.0649 | 19.6903 | 4450 | 4.9474 |
|
139 |
+
| 0.025 | 19.9115 | 4500 | 4.9512 |
|
140 |
+
|
141 |
+
|
142 |
+
### Framework versions
|
143 |
+
|
144 |
+
- Transformers 4.45.2
|
145 |
+
- Pytorch 2.5.0
|
146 |
+
- Datasets 3.0.1
|
147 |
+
- Tokenizers 0.20.1
|