--- base_model: openbmb/MiniCPM-V-2_6 library_name: peft tags: - generated_from_trainer model-index: - name: miniCPM_finetune_lora_viet_vqa results: [] --- # miniCPM_finetune_lora_viet_vqa This model is a fine-tuned version of [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1566 | 1.3889 | 100 | 2.0881 | | 1.8447 | 2.7778 | 200 | 1.8452 | | 1.7103 | 4.1667 | 300 | 1.6850 | ### Framework versions - PEFT 0.12.0 - Transformers 4.40.0 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1