File size: 3,118 Bytes
8341112
 
 
 
 
 
 
 
d18a712
8341112
 
 
 
 
 
 
27da501
8341112
 
 
 
 
 
 
27da501
8341112
27da501
57b7d6a
 
 
5760ac2
 
 
841c8eb
 
 
8505bdb
 
 
70002c3
 
 
 
 
 
 
 
 
 
 
 
da84631
 
 
e245bfd
 
 
8271eb1
 
 
d964c45
 
 
 
 
 
 
 
 
 
 
 
b0e26c9
 
 
287c625
 
 
870ea16
 
 
8341112
 
 
 
 
 
 
d18a712
8341112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
language:
- pl
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper Large v2 PL
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Common Voice 11.0
      type: mozilla-foundation/common_voice_11_0
      config: pl
      split: test
      args: pl
    metrics:
    - type: wer
      value: 7.280175959972464
      name: WER
    - type: wer
      value: 7.31
      name: WER
    - type: wer_without_norm
      value: 20.18
      name: WER unnormalized
    - type: cer
      value: 2.08
      name: CER
    - type: mer
      value: 7.27
      name: MER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: facebook/voxpopuli
      type: facebook/voxpopuli
      config: pl
      split: test
    metrics:
    - type: wer
      value: 9.61
      name: WER
    - type: wer_without_norm
      value: 30.33
      name: WER unnormalized
    - type: cer
      value: 5.5
      name: CER
    - type: mer
      value: 9.45
      name: MER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: google/fleurs
      type: google/fleurs
      config: pl_pl
      split: test
    metrics:
    - type: wer
      value: 8.68
      name: WER
    - type: wer_without_norm
      value: 29.33
      name: WER unnormalized
    - type: cer
      value: 3.63
      name: CER
    - type: mer
      value: 8.62
      name: MER
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Large v2 PL

This model is a fine-tuned version of [bardsai/whisper-large-v2-pl](https://huggingface.co/bardsai/whisper-large-v2-pl) on the Common Voice 11.0 and the FLEURS datasets.
It achieves the following results on the evaluation set:
- Loss: 0.3684
- Wer: 7.2802

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.0047        | 1.35  | 700  | 0.3428          | 8.5562 |
| 0.0011        | 2.7   | 1400 | 0.3605          | 7.5505 |
| 0.0003        | 4.05  | 2100 | 0.3684          | 7.2802 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2