File size: 3,858 Bytes
a1c4b0b ca57dfc a1c4b0b ca57dfc 15b8860 b820c08 15b8860 f25df6c 001bac3 f6dae4e e1db9d7 3a0665e 6fa8abf b820c08 a2664b2 b287bc3 815038d a1c4b0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
language:
- pl
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper Medium PL
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: pl
split: test
args: pl
metrics:
- type: wer
value: 8.71
name: WER
- type: wer_without_norm
value: 22.0
name: WER unnormalized
- type: cer
value: 2.41
name: CER
- type: mer
value: 8.65
name: MER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: facebook/voxpopuli
type: facebook/voxpopuli
config: pl
split: test
metrics:
- type: wer
value: 11.99
name: WER
- type: wer_without_norm
value: 30.9
name: WER unnormalized
- type: cer
value: 6.54
name: CER
- type: mer
value: 11.68
name: MER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: pl_pl
split: test
metrics:
- type: wer
value: 10.89
name: WER
- type: wer_without_norm
value: 30.7
name: WER unnormalized
- type: cer
value: 4.04
name: CER
- type: mer
value: 10.8
name: MER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium PL
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 and the FLEURS datasets.
It achieves the following results on the evaluation set:
- Loss: 0.3947
- Wer: 8.6872
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 8000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0805 | 0.48 | 500 | 0.2556 | 10.4888 |
| 0.0685 | 0.96 | 1000 | 0.2462 | 10.7608 |
| 0.0356 | 1.45 | 1500 | 0.2561 | 9.6728 |
| 0.0337 | 1.93 | 2000 | 0.2327 | 9.6459 |
| 0.017 | 2.41 | 2500 | 0.2444 | 9.9464 |
| 0.0179 | 2.9 | 3000 | 0.2554 | 9.6476 |
| 0.0056 | 3.38 | 3500 | 0.3001 | 9.3638 |
| 0.007 | 3.86 | 4000 | 0.2809 | 9.2245 |
| 0.0033 | 4.34 | 4500 | 0.3235 | 9.3437 |
| 0.0024 | 4.83 | 5000 | 0.3148 | 9.0633 |
| 0.0008 | 5.31 | 5500 | 0.3416 | 9.0112 |
| 0.0011 | 5.79 | 6000 | 0.3876 | 9.1858 |
| 0.0004 | 6.27 | 6500 | 0.3745 | 8.7292 |
| 0.0003 | 6.76 | 7000 | 0.3704 | 9.0314 |
| 0.0003 | 7.24 | 7500 | 0.3929 | 8.6553 |
| 0.0002 | 7.72 | 8000 | 0.3947 | 8.6872 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|