File size: 3,858 Bytes
a1c4b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca57dfc
a1c4b0b
 
 
 
 
 
 
ca57dfc
 
 
15b8860
b820c08
15b8860
f25df6c
 
 
001bac3
 
 
f6dae4e
 
 
 
 
 
 
 
 
 
 
 
e1db9d7
 
 
3a0665e
 
 
6fa8abf
 
 
b820c08
 
 
 
 
 
 
 
 
 
 
 
a2664b2
 
 
b287bc3
 
 
815038d
 
 
a1c4b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
---
language:
- pl
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper Medium PL
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Common Voice 11.0
      type: mozilla-foundation/common_voice_11_0
      config: pl
      split: test
      args: pl
    metrics:
    - type: wer
      value: 8.71
      name: WER
    - type: wer_without_norm
      value: 22.0
      name: WER unnormalized
    - type: cer
      value: 2.41
      name: CER
    - type: mer
      value: 8.65
      name: MER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: facebook/voxpopuli
      type: facebook/voxpopuli
      config: pl
      split: test
    metrics:
    - type: wer
      value: 11.99
      name: WER
    - type: wer_without_norm
      value: 30.9
      name: WER unnormalized
    - type: cer
      value: 6.54
      name: CER
    - type: mer
      value: 11.68
      name: MER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: google/fleurs
      type: google/fleurs
      config: pl_pl
      split: test
    metrics:
    - type: wer
      value: 10.89
      name: WER
    - type: wer_without_norm
      value: 30.7
      name: WER unnormalized
    - type: cer
      value: 4.04
      name: CER
    - type: mer
      value: 10.8
      name: MER
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Medium PL

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 and the FLEURS datasets.
It achieves the following results on the evaluation set:
- Loss: 0.3947
- Wer: 8.6872

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 8000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0805        | 0.48  | 500  | 0.2556          | 10.4888 |
| 0.0685        | 0.96  | 1000 | 0.2462          | 10.7608 |
| 0.0356        | 1.45  | 1500 | 0.2561          | 9.6728  |
| 0.0337        | 1.93  | 2000 | 0.2327          | 9.6459  |
| 0.017         | 2.41  | 2500 | 0.2444          | 9.9464  |
| 0.0179        | 2.9   | 3000 | 0.2554          | 9.6476  |
| 0.0056        | 3.38  | 3500 | 0.3001          | 9.3638  |
| 0.007         | 3.86  | 4000 | 0.2809          | 9.2245  |
| 0.0033        | 4.34  | 4500 | 0.3235          | 9.3437  |
| 0.0024        | 4.83  | 5000 | 0.3148          | 9.0633  |
| 0.0008        | 5.31  | 5500 | 0.3416          | 9.0112  |
| 0.0011        | 5.79  | 6000 | 0.3876          | 9.1858  |
| 0.0004        | 6.27  | 6500 | 0.3745          | 8.7292  |
| 0.0003        | 6.76  | 7000 | 0.3704          | 9.0314  |
| 0.0003        | 7.24  | 7500 | 0.3929          | 8.6553  |
| 0.0002        | 7.72  | 8000 | 0.3947          | 8.6872  |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2