File size: 3,445 Bytes
30eec92 5fe0648 30eec92 57b7e32 30eec92 57b7e32 c925998 fa5c6b5 a4e979c a59a9b7 c17923a 17567cf 719cb7f 8ed1b10 a27045c 64e95c5 8bbedc3 30eec92 7f0567a 30eec92 bb390e4 66edb8b 30eec92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
---
language:
- pl
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
base_model: openai/whisper-medium
model-index:
- name: Whisper Small PL
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: pl
split: test
args: pl
metrics:
- type: wer
value: 8.85
name: WER
- type: wer_without_norm
value: 21.75
name: WER unnormalized
- type: cer
value: 2.63
name: CER
- type: mer
value: 8.76
name: MER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: facebook/voxpopuli
type: facebook/voxpopuli
config: pl
split: test
metrics:
- type: wer
value: 12.18
name: WER
- type: wer_without_norm
value: 32.17
name: WER unnormalized
- type: cer
value: 6.99
name: CER
- type: mer
value: 11.84
name: MER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: pl_pl
split: test
metrics:
- type: wer
value: 12.77
name: WER
- type: wer_without_norm
value: 32.37
name: WER unnormalized
- type: cer
value: 5.87
name: CER
- type: mer
value: 12.52
name: MER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small PL
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3739
- Wer: 8.5898
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.0474 | 1.1 | 1000 | 0.2561 | 9.4612 |
| 0.0119 | 3.09 | 2000 | 0.2901 | 8.9726 |
| 0.0045 | 5.08 | 3000 | 0.3151 | 8.8870 |
| 0.0007 | 7.07 | 4000 | 0.4218 | 8.6032 |
| 0.0005 | 9.07 | 5000 | 0.3739 | 8.5898 |
### Evaluation results
When tested on diffrent polish ASR datasets (splits: test), this model achieves the following results:
| Dataset | WER | WER unnormalized | CER | MER |
|:-----------------:|:-----:|:----------------:|:-----:|:-----:|
|common_voice_11_0 | 8.85 | 21.75 | 2.63 | 8.76 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|