--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - common_language metrics: - accuracy model-index: - name: language-detection-fine-tuned-on-xlm-roberta-base results: - task: name: Text Classification type: text-classification dataset: name: common_language type: common_language config: full split: test args: full metrics: - name: Accuracy type: accuracy value: 0.9778634915311085 --- # language-detection-fine-tuned-on-xlm-roberta-base This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the common_language dataset. It achieves the following results on the evaluation set: - Loss: 0.1527 - Accuracy: 0.9779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2047 | 1.0 | 22194 | 0.1527 | 0.9779 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3