File size: 3,001 Bytes
a7f6a20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: llama3.1
language:
- en
inference: false
fine-tuning: false
tags:
- nvidia
- llama3.1
datasets:
- nvidia/HelpSteer2
base_model: meta-llama/Llama-3.1-70B-Instruct
pipeline_tag: text-generation
library_name: transformers
quantized_by: bartowski
---
## Exllama v2 Quantizations of Llama-3.1-Nemotron-70B-Instruct-HF
Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.2.3">turboderp's ExLlamaV2 v0.2.3</a> for quantization.
<b>The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)</b>
Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.
Conversion was done using the default calibration dataset.
Default arguments used except when the bits per weight is above 6.0, at that point the lm_head layer is quantized at 8 bits per weight instead of the default 6.
Original model: https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
<a href="https://huggingface.co/bartowski/Llama-3.1-Nemotron-70B-Instruct-HF-exl2/tree/8_0">8.0 bits per weight</a>
<a href="https://huggingface.co/bartowski/Llama-3.1-Nemotron-70B-Instruct-HF-exl2/tree/6_5">6.5 bits per weight</a>
<a href="https://huggingface.co/bartowski/Llama-3.1-Nemotron-70B-Instruct-HF-exl2/tree/5_0">5.0 bits per weight</a>
<a href="https://huggingface.co/bartowski/Llama-3.1-Nemotron-70B-Instruct-HF-exl2/tree/4_25">4.25 bits per weight</a>
<a href="https://huggingface.co/bartowski/Llama-3.1-Nemotron-70B-Instruct-HF-exl2/tree/3_5">3.5 bits per weight</a>
<a href="https://huggingface.co/bartowski/Llama-3.1-Nemotron-70B-Instruct-HF-exl2/tree/3_0">3.0 bits per weight</a>
<a href="https://huggingface.co/bartowski/Llama-3.1-Nemotron-70B-Instruct-HF-exl2/tree/2_2">2.2 bits per weight</a>
## Download instructions
With git:
```shell
git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/Llama-3.1-Nemotron-70B-Instruct-HF-exl2
```
With huggingface hub (credit to TheBloke for instructions):
```shell
pip3 install huggingface-hub
```
To download the `main` (only useful if you only care about measurement.json) branch to a folder called `Llama-3.1-Nemotron-70B-Instruct-HF-exl2`:
```shell
mkdir Llama-3.1-Nemotron-70B-Instruct-HF-exl2
huggingface-cli download bartowski/Llama-3.1-Nemotron-70B-Instruct-HF-exl2 --local-dir Llama-3.1-Nemotron-70B-Instruct-HF-exl2
```
To download from a different branch, add the `--revision` parameter:
Linux:
```shell
mkdir Llama-3.1-Nemotron-70B-Instruct-HF-exl2-6_5
huggingface-cli download bartowski/Llama-3.1-Nemotron-70B-Instruct-HF-exl2 --revision 6_5 --local-dir Llama-3.1-Nemotron-70B-Instruct-HF-exl2-6_5
```
Windows (which apparently doesn't like _ in folders sometimes?):
```shell
mkdir Llama-3.1-Nemotron-70B-Instruct-HF-exl2-6.5
huggingface-cli download bartowski/Llama-3.1-Nemotron-70B-Instruct-HF-exl2 --revision 6_5 --local-dir Llama-3.1-Nemotron-70B-Instruct-HF-exl2-6.5
```
|