File size: 16,000 Bytes
1e9294c 0390adf 1e9294c 0390adf 1e9294c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
---
language:
- en
- fr
- de
- es
- it
- pt
- ja
- ko
- zh
- ar
license: cc-by-nc-4.0
library_name: transformers
extra_gated_prompt: "By submitting this form, you agree to the [License Agreement](https://cohere.com/c4ai-cc-by-nc-license) and acknowledge that the information you provide will be collected, used, and shared in accordance with Cohere’s [Privacy Policy]( https://cohere.com/privacy)."
extra_gated_fields:
Name: text
Affiliation: text
Country:
type: select
options:
- Aruba
- Afghanistan
- Angola
- Anguilla
- Åland Islands
- Albania
- Andorra
- United Arab Emirates
- Argentina
- Armenia
- American Samoa
- Antarctica
- French Southern Territories
- Antigua and Barbuda
- Australia
- Austria
- Azerbaijan
- Burundi
- Belgium
- Benin
- Bonaire Sint Eustatius and Saba
- Burkina Faso
- Bangladesh
- Bulgaria
- Bahrain
- Bahamas
- Bosnia and Herzegovina
- Saint Barthélemy
- Belarus
- Belize
- Bermuda
- Plurinational State of Bolivia
- Brazil
- Barbados
- Brunei-Darussalam
- Bhutan
- Bouvet-Island
- Botswana
- Central African Republic
- Canada
- Cocos (Keeling) Islands
- Switzerland
- Chile
- China
- Côte-dIvoire
- Cameroon
- Democratic Republic of the Congo
- Cook Islands
- Colombia
- Comoros
- Cabo Verde
- Costa Rica
- Cuba
- Curaçao
- Christmas Island
- Cayman Islands
- Cyprus
- Czechia
- Germany
- Djibouti
- Dominica
- Denmark
- Dominican Republic
- Algeria
- Ecuador
- Egypt
- Eritrea
- Western Sahara
- Spain
- Estonia
- Ethiopia
- Finland
- Fiji
- Falkland Islands (Malvinas)
- France
- Faroe Islands
- Federated States of Micronesia
- Gabon
- United Kingdom
- Georgia
- Guernsey
- Ghana
- Gibraltar
- Guinea
- Guadeloupe
- Gambia
- Guinea Bissau
- Equatorial Guinea
- Greece
- Grenada
- Greenland
- Guatemala
- French Guiana
- Guam
- Guyana
- Hong Kong
- Heard Island and McDonald Islands
- Honduras
- Croatia
- Haiti
- Hungary
- Indonesia
- Isle of Man
- India
- British Indian Ocean Territory
- Ireland
- Islamic Republic of Iran
- Iraq
- Iceland
- Israel
- Italy
- Jamaica
- Jersey
- Jordan
- Japan
- Kazakhstan
- Kenya
- Kyrgyzstan
- Cambodia
- Kiribati
- Saint-Kitts-and-Nevis
- South Korea
- Kuwait
- Lao-Peoples-Democratic-Republic
- Lebanon
- Liberia
- Libya
- Saint-Lucia
- Liechtenstein
- Sri Lanka
- Lesotho
- Lithuania
- Luxembourg
- Latvia
- Macao
- Saint Martin (French-part)
- Morocco
- Monaco
- Republic of Moldova
- Madagascar
- Maldives
- Mexico
- Marshall Islands
- North Macedonia
- Mali
- Malta
- Myanmar
- Montenegro
- Mongolia
- Northern Mariana Islands
- Mozambique
- Mauritania
- Montserrat
- Martinique
- Mauritius
- Malawi
- Malaysia
- Mayotte
- Namibia
- New Caledonia
- Niger
- Norfolk Island
- Nigeria
- Nicaragua
- Niue
- Netherlands
- Norway
- Nepal
- Nauru
- New Zealand
- Oman
- Pakistan
- Panama
- Pitcairn
- Peru
- Philippines
- Palau
- Papua New Guinea
- Poland
- Puerto Rico
- North Korea
- Portugal
- Paraguay
- State of Palestine
- French Polynesia
- Qatar
- Réunion
- Romania
- Russia
- Rwanda
- Saudi Arabia
- Sudan
- Senegal
- Singapore
- South Georgia and the South Sandwich Islands
- Saint Helena Ascension and Tristan da Cunha
- Svalbard and Jan Mayen
- Solomon Islands
- Sierra Leone
- El Salvador
- San Marino
- Somalia
- Saint Pierre and Miquelon
- Serbia
- South Sudan
- Sao Tome and Principe
- Suriname
- Slovakia
- Slovenia
- Sweden
- Eswatini
- Sint Maarten (Dutch-part)
- Seychelles
- Syrian Arab Republic
- Turks and Caicos Islands
- Chad
- Togo
- Thailand
- Tajikistan
- Tokelau
- Turkmenistan
- Timor Leste
- Tonga
- Trinidad and Tobago
- Tunisia
- Turkey
- Tuvalu
- Taiwan
- United Republic of Tanzania
- Uganda
- Ukraine
- United States Minor Outlying Islands
- Uruguay
- United-States
- Uzbekistan
- Holy See (Vatican City State)
- Saint Vincent and the Grenadines
- Bolivarian Republic of Venezuela
- Virgin Islands British
- Virgin Islands U.S.
- VietNam
- Vanuatu
- Wallis and Futuna
- Samoa
- Yemen
- South Africa
- Zambia
- Zimbabwe
Receive email updates on C4AI and Cohere research, events, products and services?:
type: select
options:
- Yes
- No
I agree to use this model for non-commercial use ONLY: checkbox
quantized_by: bartowski
pipeline_tag: text-generation
base_model: CohereForAI/c4ai-command-r-08-2024
---
## Llamacpp imatrix Quantizations of c4ai-command-r-08-2024
Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3634">b3634</a> for quantization.
Original model: https://huggingface.co/CohereForAI/c4ai-command-r-08-2024
All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8)
Run them in [LM Studio](https://lmstudio.ai/)
## Prompt format
```
<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{system_prompt}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>{prompt}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
```
## Download a file (not the whole branch) from below:
| Filename | Quant type | File Size | Split | Description |
| -------- | ---------- | --------- | ----- | ----------- |
| [c4ai-command-r-08-2024-f16.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/tree/main/c4ai-command-r-08-2024-f16) | f16 | 64.60GB | true | Full F16 weights. |
| [c4ai-command-r-08-2024-Q8_0.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-Q8_0.gguf) | Q8_0 | 34.33GB | false | Extremely high quality, generally unneeded but max available quant. |
| [c4ai-command-r-08-2024-Q6_K_L.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-Q6_K_L.gguf) | Q6_K_L | 27.01GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. |
| [c4ai-command-r-08-2024-Q6_K.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-Q6_K.gguf) | Q6_K | 26.51GB | false | Very high quality, near perfect, *recommended*. |
| [c4ai-command-r-08-2024-Q5_K_L.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-Q5_K_L.gguf) | Q5_K_L | 23.56GB | false | Uses Q8_0 for embed and output weights. High quality, *recommended*. |
| [c4ai-command-r-08-2024-Q5_K_M.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-Q5_K_M.gguf) | Q5_K_M | 23.05GB | false | High quality, *recommended*. |
| [c4ai-command-r-08-2024-Q5_K_S.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-Q5_K_S.gguf) | Q5_K_S | 22.49GB | false | High quality, *recommended*. |
| [c4ai-command-r-08-2024-Q4_K_L.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-Q4_K_L.gguf) | Q4_K_L | 20.31GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. |
| [c4ai-command-r-08-2024-Q4_K_M.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-Q4_K_M.gguf) | Q4_K_M | 19.80GB | false | Good quality, default size for must use cases, *recommended*. |
| [c4ai-command-r-08-2024-Q4_K_S.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-Q4_K_S.gguf) | Q4_K_S | 18.85GB | false | Slightly lower quality with more space savings, *recommended*. |
| [c4ai-command-r-08-2024-Q4_0.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-Q4_0.gguf) | Q4_0 | 18.78GB | false | Legacy format, generally not worth using over similarly sized formats |
| [c4ai-command-r-08-2024-Q4_0_8_8.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-Q4_0_8_8.gguf) | Q4_0_8_8 | 18.72GB | false | Optimized for ARM and CPU inference, much faster than Q4_0 at similar quality. |
| [c4ai-command-r-08-2024-Q4_0_4_8.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-Q4_0_4_8.gguf) | Q4_0_4_8 | 18.72GB | false | Optimized for ARM and CPU inference, much faster than Q4_0 at similar quality. |
| [c4ai-command-r-08-2024-Q4_0_4_4.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-Q4_0_4_4.gguf) | Q4_0_4_4 | 18.72GB | false | Optimized for ARM and CPU inference, much faster than Q4_0 at similar quality. |
| [c4ai-command-r-08-2024-Q3_K_XL.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-Q3_K_XL.gguf) | Q3_K_XL | 18.07GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
| [c4ai-command-r-08-2024-IQ4_XS.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-IQ4_XS.gguf) | IQ4_XS | 17.83GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
| [c4ai-command-r-08-2024-Q3_K_L.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-Q3_K_L.gguf) | Q3_K_L | 17.56GB | false | Lower quality but usable, good for low RAM availability. |
| [c4ai-command-r-08-2024-Q3_K_M.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-Q3_K_M.gguf) | Q3_K_M | 16.23GB | false | Low quality. |
| [c4ai-command-r-08-2024-IQ3_M.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-IQ3_M.gguf) | IQ3_M | 15.24GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
| [c4ai-command-r-08-2024-Q3_K_S.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-Q3_K_S.gguf) | Q3_K_S | 14.71GB | false | Low quality, not recommended. |
| [c4ai-command-r-08-2024-IQ3_XS.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-IQ3_XS.gguf) | IQ3_XS | 14.05GB | false | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
| [c4ai-command-r-08-2024-Q2_K_L.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-Q2_K_L.gguf) | Q2_K_L | 13.32GB | false | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. |
| [c4ai-command-r-08-2024-Q2_K.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-Q2_K.gguf) | Q2_K | 12.81GB | false | Very low quality but surprisingly usable. |
| [c4ai-command-r-08-2024-IQ2_M.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-IQ2_M.gguf) | IQ2_M | 11.61GB | false | Relatively low quality, uses SOTA techniques to be surprisingly usable. |
| [c4ai-command-r-08-2024-IQ2_S.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-IQ2_S.gguf) | IQ2_S | 10.79GB | false | Low quality, uses SOTA techniques to be usable. |
| [c4ai-command-r-08-2024-IQ2_XS.gguf](https://huggingface.co/bartowski/c4ai-command-r-08-2024-GGUF/blob/main/c4ai-command-r-08-2024-IQ2_XS.gguf) | IQ2_XS | 10.31GB | false | Low quality, uses SOTA techniques to be usable. |
## Embed/output weights
Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to.
Some say that this improves the quality, others don't notice any difference. If you use these models PLEASE COMMENT with your findings. I would like feedback that these are actually used and useful so I don't keep uploading quants no one is using.
Thanks!
## Credits
Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset
Thank you ZeroWw for the inspiration to experiment with embed/output
## Downloading using huggingface-cli
First, make sure you have hugginface-cli installed:
```
pip install -U "huggingface_hub[cli]"
```
Then, you can target the specific file you want:
```
huggingface-cli download bartowski/c4ai-command-r-08-2024-GGUF --include "c4ai-command-r-08-2024-Q4_K_M.gguf" --local-dir ./
```
If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
```
huggingface-cli download bartowski/c4ai-command-r-08-2024-GGUF --include "c4ai-command-r-08-2024-Q8_0/*" --local-dir ./
```
You can either specify a new local-dir (c4ai-command-r-08-2024-Q8_0) or download them all in place (./)
## Which file should I choose?
A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.
If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.
If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.
Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.
If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.
If you want to get more into the weeds, you can check out this extremely useful feature chart:
[llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix)
But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.
These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.
The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
|