File size: 26,900 Bytes
3b401ec 61fba13 3b401ec 76c11cd 3b401ec 76c11cd 3b401ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 |
---
quantized_by: bartowski
pipeline_tag: text-generation
language:
- en
- ar
- cs
- de
- es
- fr
- it
- ja
- ko
- nl
- pt
- zh
tags:
- language
- granite
- embeddings
- multilingual
license: apache-2.0
base_model: ibm-granite/granite-embedding-278m-multilingual
model-index:
- name: ibm-granite/granite-embedding-278m-multilingual
results:
- task:
type: Retrieval
dataset:
name: Miracl (en)
type: miracl/mmteb-miracl
config: en
split: dev
metrics:
- type: ndcg_at_1
value: 0.45557
- type: ndcg_at_10
value: 0.49372
- type: ndcg_at_100
value: 0.5728
- type: ndcg_at_1000
value: 0.59187
- type: ndcg_at_20
value: 0.52863
- type: ndcg_at_3
value: 0.43969
- type: ndcg_at_5
value: 0.45551
- type: recall_at_1
value: 0.21785
- type: recall_at_10
value: 0.59513
- type: recall_at_100
value: 0.85785
- type: recall_at_1000
value: 0.96041
- type: recall_at_20
value: 0.69357
- type: recall_at_3
value: 0.40403
- type: recall_at_5
value: 0.48499
- task:
type: Retrieval
dataset:
name: Miracl (ar)
type: miracl/mmteb-miracl
config: ar
split: dev
metrics:
- type: ndcg_at_1
value: 0.57459
- type: ndcg_at_10
value: 0.64238
- type: ndcg_at_100
value: 0.6867
- type: ndcg_at_1000
value: 0.6951
- type: ndcg_at_20
value: 0.66455
- type: ndcg_at_3
value: 0.58162
- type: ndcg_at_5
value: 0.60831
- type: recall_at_1
value: 0.38064
- type: recall_at_10
value: 0.75098
- type: recall_at_100
value: 0.91203
- type: recall_at_1000
value: 0.96706
- type: recall_at_20
value: 0.81978
- type: recall_at_3
value: 0.58618
- type: recall_at_5
value: 0.66353
- task:
type: Retrieval
dataset:
name: Miracl (bn)
type: miracl/mmteb-miracl
config: bn
split: dev
metrics:
- type: ndcg_at_1
value: 0.60341
- type: ndcg_at_10
value: 0.68055
- type: ndcg_at_100
value: 0.72008
- type: ndcg_at_1000
value: 0.72716
- type: ndcg_at_20
value: 0.69914
- type: ndcg_at_3
value: 0.60805
- type: ndcg_at_5
value: 0.64486
- type: recall_at_1
value: 0.37948
- type: recall_at_10
value: 0.80609
- type: recall_at_100
value: 0.94305
- type: recall_at_1000
value: 0.98625
- type: recall_at_20
value: 0.86141
- type: recall_at_3
value: 0.61095
- type: recall_at_5
value: 0.71316
- task:
type: Retrieval
dataset:
name: Miracl (de)
type: miracl/mmteb-miracl
config: de
split: dev
metrics:
- type: ndcg_at_1
value: 0.45574
- type: ndcg_at_10
value: 0.48123
- type: ndcg_at_100
value: 0.56049
- type: ndcg_at_1000
value: 0.57979
- type: ndcg_at_20
value: 0.51785
- type: ndcg_at_3
value: 0.41243
- type: ndcg_at_5
value: 0.4386
- type: recall_at_1
value: 0.20401
- type: recall_at_10
value: 0.58779
- type: recall_at_100
value: 0.8584
- type: recall_at_1000
value: 0.97364
- type: recall_at_20
value: 0.69061
- type: recall_at_3
value: 0.36573
- type: recall_at_5
value: 0.47495
- task:
type: Retrieval
dataset:
name: Miracl (es)
type: miracl/mmteb-miracl
config: es
split: dev
metrics:
- type: ndcg_at_1
value: 0.5571
- type: ndcg_at_10
value: 0.49688
- type: ndcg_at_100
value: 0.60493
- type: ndcg_at_1000
value: 0.62922
- type: ndcg_at_20
value: 0.54438
- type: ndcg_at_3
value: 0.47981
- type: ndcg_at_5
value: 0.46584
- type: recall_at_1
value: 0.1638
- type: recall_at_10
value: 0.54155
- type: recall_at_100
value: 0.85136
- type: recall_at_1000
value: 0.96951
- type: recall_at_20
value: 0.65329
- type: recall_at_3
value: 0.31503
- type: recall_at_5
value: 0.40356
- task:
type: Retrieval
dataset:
name: Miracl (fa)
type: miracl/mmteb-miracl
config: fa
split: dev
metrics:
- type: ndcg_at_1
value: 0.39873
- type: ndcg_at_10
value: 0.50226
- type: ndcg_at_100
value: 0.56517
- type: ndcg_at_1000
value: 0.57967
- type: ndcg_at_20
value: 0.5292
- type: ndcg_at_3
value: 0.42738
- type: ndcg_at_5
value: 0.45843
- type: recall_at_1
value: 0.25369
- type: recall_at_10
value: 0.63776
- type: recall_at_100
value: 0.87686
- type: recall_at_1000
value: 0.9671
- type: recall_at_20
value: 0.72099
- type: recall_at_3
value: 0.43808
- type: recall_at_5
value: 0.52378
- task:
type: Retrieval
dataset:
name: Miracl (fi)
type: miracl/mmteb-miracl
config: fi
split: dev
metrics:
- type: ndcg_at_1
value: 0.60818
- type: ndcg_at_10
value: 0.6746
- type: ndcg_at_100
value: 0.71516
- type: ndcg_at_1000
value: 0.7218
- type: ndcg_at_20
value: 0.69692
- type: ndcg_at_3
value: 0.6006
- type: ndcg_at_5
value: 0.63842
- type: recall_at_1
value: 0.39264
- type: recall_at_10
value: 0.78577
- type: recall_at_100
value: 0.93291
- type: recall_at_1000
value: 0.97493
- type: recall_at_20
value: 0.85435
- type: recall_at_3
value: 0.61055
- type: recall_at_5
value: 0.69774
- task:
type: Retrieval
dataset:
name: Miracl (fr)
type: miracl/mmteb-miracl
config: fr
split: dev
metrics:
- type: ndcg_at_1
value: 0.3965
- type: ndcg_at_10
value: 0.49891
- type: ndcg_at_100
value: 0.56492
- type: ndcg_at_1000
value: 0.57837
- type: ndcg_at_20
value: 0.53163
- type: ndcg_at_3
value: 0.39843
- type: ndcg_at_5
value: 0.44416
- type: recall_at_1
value: 0.22644
- type: recall_at_10
value: 0.65169
- type: recall_at_100
value: 0.89786
- type: recall_at_1000
value: 0.98081
- type: recall_at_20
value: 0.75338
- type: recall_at_3
value: 0.39798
- type: recall_at_5
value: 0.51001
- task:
type: Retrieval
dataset:
name: Miracl (hi)
type: miracl/mmteb-miracl
config: hi
split: dev
metrics:
- type: ndcg_at_1
value: 0.36857
- type: ndcg_at_10
value: 0.46141
- type: ndcg_at_100
value: 0.52565
- type: ndcg_at_1000
value: 0.54319
- type: ndcg_at_20
value: 0.49384
- type: ndcg_at_3
value: 0.39469
- type: ndcg_at_5
value: 0.4184
- type: recall_at_1
value: 0.20185
- type: recall_at_10
value: 0.59474
- type: recall_at_100
value: 0.83385
- type: recall_at_1000
value: 0.94813
- type: recall_at_20
value: 0.69437
- type: recall_at_3
value: 0.38993
- type: recall_at_5
value: 0.47881
- task:
type: Retrieval
dataset:
name: Miracl (id)
type: miracl/mmteb-miracl
config: id
split: dev
metrics:
- type: ndcg_at_1
value: 0.46354
- type: ndcg_at_10
value: 0.47229
- type: ndcg_at_100
value: 0.5525
- type: ndcg_at_1000
value: 0.57648
- type: ndcg_at_20
value: 0.50606
- type: ndcg_at_3
value: 0.42538
- type: ndcg_at_5
value: 0.43717
- type: recall_at_1
value: 0.20787
- type: recall_at_10
value: 0.54771
- type: recall_at_100
value: 0.80689
- type: recall_at_1000
value: 0.94032
- type: recall_at_20
value: 0.63842
- type: recall_at_3
value: 0.36229
- type: recall_at_5
value: 0.44437
- task:
type: Retrieval
dataset:
name: Miracl (ja)
type: miracl/mmteb-miracl
config: ja
split: dev
metrics:
- type: ndcg_at_1
value: 0.56279
- type: ndcg_at_10
value: 0.6281
- type: ndcg_at_100
value: 0.67757
- type: ndcg_at_1000
value: 0.68667
- type: ndcg_at_20
value: 0.6521
- type: ndcg_at_3
value: 0.56226
- type: ndcg_at_5
value: 0.5866
- type: recall_at_1
value: 0.36648
- type: recall_at_10
value: 0.7496
- type: recall_at_100
value: 0.92461
- type: recall_at_1000
value: 0.97827
- type: recall_at_20
value: 0.82326
- type: recall_at_3
value: 0.55845
- type: recall_at_5
value: 0.63854
- task:
type: Retrieval
dataset:
name: Miracl (ko)
type: miracl/mmteb-miracl
config: ko
split: dev
metrics:
- type: ndcg_at_1
value: 0.52582
- type: ndcg_at_10
value: 0.59216
- type: ndcg_at_100
value: 0.65093
- type: ndcg_at_1000
value: 0.66204
- type: ndcg_at_20
value: 0.62427
- type: ndcg_at_3
value: 0.5373
- type: ndcg_at_5
value: 0.55886
- type: recall_at_1
value: 0.30521
- type: recall_at_10
value: 0.71159
- type: recall_at_100
value: 0.90203
- type: recall_at_1000
value: 0.96714
- type: recall_at_20
value: 0.80209
- type: recall_at_3
value: 0.515
- type: recall_at_5
value: 0.6071
- task:
type: Retrieval
dataset:
name: Miracl (ru)
type: miracl/mmteb-miracl
config: ru
split: dev
metrics:
- type: ndcg_at_1
value: 0.47524
- type: ndcg_at_10
value: 0.52349
- type: ndcg_at_100
value: 0.59725
- type: ndcg_at_1000
value: 0.61313
- type: ndcg_at_20
value: 0.55669
- type: ndcg_at_3
value: 0.46812
- type: ndcg_at_5
value: 0.48442
- type: recall_at_1
value: 0.24337
- type: recall_at_10
value: 0.62437
- type: recall_at_100
value: 0.86489
- type: recall_at_1000
value: 0.95266
- type: recall_at_20
value: 0.71411
- type: recall_at_3
value: 0.42927
- type: recall_at_5
value: 0.51258
- task:
type: Retrieval
dataset:
name: Miracl (sw)
type: miracl/mmteb-miracl
config: sw
split: dev
metrics:
- type: ndcg_at_1
value: 0.5166
- type: ndcg_at_10
value: 0.61271
- type: ndcg_at_100
value: 0.66099
- type: ndcg_at_1000
value: 0.66867
- type: ndcg_at_20
value: 0.63643
- type: ndcg_at_3
value: 0.54828
- type: ndcg_at_5
value: 0.57382
- type: recall_at_1
value: 0.35277
- type: recall_at_10
value: 0.74368
- type: recall_at_100
value: 0.92261
- type: recall_at_1000
value: 0.97109
- type: recall_at_20
value: 0.81888
- type: recall_at_3
value: 0.56739
- type: recall_at_5
value: 0.6421
- task:
type: Retrieval
dataset:
name: Miracl (te)
type: miracl/mmteb-miracl
config: te
split: dev
metrics:
- type: ndcg_at_1
value: 0.63768
- type: ndcg_at_10
value: 0.79193
- type: ndcg_at_100
value: 0.80243
- type: ndcg_at_1000
value: 0.80438
- type: ndcg_at_20
value: 0.79549
- type: ndcg_at_3
value: 0.76031
- type: ndcg_at_5
value: 0.77915
- type: recall_at_1
value: 0.63084
- type: recall_at_10
value: 0.92411
- type: recall_at_100
value: 0.97363
- type: recall_at_1000
value: 0.98833
- type: recall_at_20
value: 0.9374
- type: recall_at_3
value: 0.84159
- type: recall_at_5
value: 0.88627
- task:
type: Retrieval
dataset:
name: Miracl (th)
type: miracl/mmteb-miracl
config: th
split: dev
metrics:
- type: ndcg_at_1
value: 0.66712
- type: ndcg_at_10
value: 0.73324
- type: ndcg_at_100
value: 0.76633
- type: ndcg_at_1000
value: 0.77119
- type: ndcg_at_20
value: 0.75243
- type: ndcg_at_3
value: 0.67393
- type: ndcg_at_5
value: 0.70201
- type: recall_at_1
value: 0.47106
- type: recall_at_10
value: 0.84294
- type: recall_at_100
value: 0.95949
- type: recall_at_1000
value: 0.98874
- type: recall_at_20
value: 0.90085
- type: recall_at_3
value: 0.68456
- type: recall_at_5
value: 0.75915
- task:
type: Retrieval
dataset:
name: Miracl (yo)
type: miracl/mmteb-miracl
config: yo
split: dev
metrics:
- type: ndcg_at_1
value: 0.4958
- type: ndcg_at_10
value: 0.68705
- type: ndcg_at_100
value: 0.70664
- type: ndcg_at_1000
value: 0.71197
- type: ndcg_at_20
value: 0.698
- type: ndcg_at_3
value: 0.64793
- type: ndcg_at_5
value: 0.66709
- type: recall_at_1
value: 0.46289
- type: recall_at_10
value: 0.85154
- type: recall_at_100
value: 0.93557
- type: recall_at_1000
value: 0.97479
- type: recall_at_20
value: 0.89076
- type: recall_at_3
value: 0.7507
- type: recall_at_5
value: 0.79202
- task:
type: Retrieval
dataset:
name: Miracl (zh)
type: miracl/mmteb-miracl
config: zh
split: dev
metrics:
- type: ndcg_at_1
value: 0.47583
- type: ndcg_at_10
value: 0.52553
- type: ndcg_at_100
value: 0.6
- type: ndcg_at_1000
value: 0.61415
- type: ndcg_at_20
value: 0.55668
- type: ndcg_at_3
value: 0.45839
- type: ndcg_at_5
value: 0.48127
- type: recall_at_1
value: 0.24488
- type: recall_at_10
value: 0.63659
- type: recall_at_100
value: 0.89702
- type: recall_at_1000
value: 0.97996
- type: recall_at_20
value: 0.72652
- type: recall_at_3
value: 0.42827
- type: recall_at_5
value: 0.52081
---
## Llamacpp Static Quantizations of granite-embedding-278m-multilingual
Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b4381">b4381</a> for quantization.
Original model: https://huggingface.co/ibm-granite/granite-embedding-278m-multilingual
Run them in [LM Studio](https://lmstudio.ai/)
## Prompt format
No prompt format found, check original model page
## What's new:
Fix tokenizer
## Download a file (not the whole branch) from below:
| Filename | Quant type | File Size | Split | Description |
| -------- | ---------- | --------- | ----- | ----------- |
| [granite-embedding-278m-multilingual-f16.gguf](https://huggingface.co/bartowski/granite-embedding-278m-multilingual-GGUF/blob/main/granite-embedding-278m-multilingual-f16.gguf) | f16 | 0.56GB | false | Full F16 weights. |
| [granite-embedding-278m-multilingual-Q8_0.gguf](https://huggingface.co/bartowski/granite-embedding-278m-multilingual-GGUF/blob/main/granite-embedding-278m-multilingual-Q8_0.gguf) | Q8_0 | 0.30GB | false | Extremely high quality, generally unneeded but max available quant. |
| [granite-embedding-278m-multilingual-Q6_K_L.gguf](https://huggingface.co/bartowski/granite-embedding-278m-multilingual-GGUF/blob/main/granite-embedding-278m-multilingual-Q6_K_L.gguf) | Q6_K_L | 0.28GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. |
| [granite-embedding-278m-multilingual-Q5_K_L.gguf](https://huggingface.co/bartowski/granite-embedding-278m-multilingual-GGUF/blob/main/granite-embedding-278m-multilingual-Q5_K_L.gguf) | Q5_K_L | 0.27GB | false | Uses Q8_0 for embed and output weights. High quality, *recommended*. |
| [granite-embedding-278m-multilingual-Q4_K_L.gguf](https://huggingface.co/bartowski/granite-embedding-278m-multilingual-GGUF/blob/main/granite-embedding-278m-multilingual-Q4_K_L.gguf) | Q4_K_L | 0.27GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. |
| [granite-embedding-278m-multilingual-Q3_K_XL.gguf](https://huggingface.co/bartowski/granite-embedding-278m-multilingual-GGUF/blob/main/granite-embedding-278m-multilingual-Q3_K_XL.gguf) | Q3_K_XL | 0.26GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
| [granite-embedding-278m-multilingual-Q6_K.gguf](https://huggingface.co/bartowski/granite-embedding-278m-multilingual-GGUF/blob/main/granite-embedding-278m-multilingual-Q6_K.gguf) | Q6_K | 0.24GB | false | Very high quality, near perfect, *recommended*. |
| [granite-embedding-278m-multilingual-Q5_K_M.gguf](https://huggingface.co/bartowski/granite-embedding-278m-multilingual-GGUF/blob/main/granite-embedding-278m-multilingual-Q5_K_M.gguf) | Q5_K_M | 0.23GB | false | High quality, *recommended*. |
| [granite-embedding-278m-multilingual-Q5_K_S.gguf](https://huggingface.co/bartowski/granite-embedding-278m-multilingual-GGUF/blob/main/granite-embedding-278m-multilingual-Q5_K_S.gguf) | Q5_K_S | 0.22GB | false | High quality, *recommended*. |
| [granite-embedding-278m-multilingual-Q4_K_M.gguf](https://huggingface.co/bartowski/granite-embedding-278m-multilingual-GGUF/blob/main/granite-embedding-278m-multilingual-Q4_K_M.gguf) | Q4_K_M | 0.22GB | false | Good quality, default size for most use cases, *recommended*. |
| [granite-embedding-278m-multilingual-Q4_K_S.gguf](https://huggingface.co/bartowski/granite-embedding-278m-multilingual-GGUF/blob/main/granite-embedding-278m-multilingual-Q4_K_S.gguf) | Q4_K_S | 0.21GB | false | Slightly lower quality with more space savings, *recommended*. |
| [granite-embedding-278m-multilingual-Q4_0.gguf](https://huggingface.co/bartowski/granite-embedding-278m-multilingual-GGUF/blob/main/granite-embedding-278m-multilingual-Q4_0.gguf) | Q4_0 | 0.21GB | false | Legacy format, offers online repacking for ARM and AVX CPU inference. |
| [granite-embedding-278m-multilingual-IQ4_NL.gguf](https://huggingface.co/bartowski/granite-embedding-278m-multilingual-GGUF/blob/main/granite-embedding-278m-multilingual-IQ4_NL.gguf) | IQ4_NL | 0.21GB | false | Similar to IQ4_XS, but slightly larger. Offers online repacking for ARM CPU inference. |
| [granite-embedding-278m-multilingual-IQ4_XS.gguf](https://huggingface.co/bartowski/granite-embedding-278m-multilingual-GGUF/blob/main/granite-embedding-278m-multilingual-IQ4_XS.gguf) | IQ4_XS | 0.21GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
| [granite-embedding-278m-multilingual-Q3_K_L.gguf](https://huggingface.co/bartowski/granite-embedding-278m-multilingual-GGUF/blob/main/granite-embedding-278m-multilingual-Q3_K_L.gguf) | Q3_K_L | 0.21GB | false | Lower quality but usable, good for low RAM availability. |
| [granite-embedding-278m-multilingual-Q3_K_M.gguf](https://huggingface.co/bartowski/granite-embedding-278m-multilingual-GGUF/blob/main/granite-embedding-278m-multilingual-Q3_K_M.gguf) | Q3_K_M | 0.21GB | false | Low quality. |
| [granite-embedding-278m-multilingual-IQ3_M.gguf](https://huggingface.co/bartowski/granite-embedding-278m-multilingual-GGUF/blob/main/granite-embedding-278m-multilingual-IQ3_M.gguf) | IQ3_M | 0.21GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
## Embed/output weights
Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to.
## Downloading using huggingface-cli
<details>
<summary>Click to view download instructions</summary>
First, make sure you have hugginface-cli installed:
```
pip install -U "huggingface_hub[cli]"
```
Then, you can target the specific file you want:
```
huggingface-cli download bartowski/granite-embedding-278m-multilingual-GGUF --include "granite-embedding-278m-multilingual-Q4_K_M.gguf" --local-dir ./
```
If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
```
huggingface-cli download bartowski/granite-embedding-278m-multilingual-GGUF --include "granite-embedding-278m-multilingual-Q8_0/*" --local-dir ./
```
You can either specify a new local-dir (granite-embedding-278m-multilingual-Q8_0) or download them all in place (./)
</details>
## ARM/AVX information
Previously, you would download Q4_0_4_4/4_8/8_8, and these would have their weights interleaved in memory in order to improve performance on ARM and AVX machines by loading up more data in one pass.
Now, however, there is something called "online repacking" for weights. details in [this PR](https://github.com/ggerganov/llama.cpp/pull/9921). If you use Q4_0 and your hardware would benefit from repacking weights, it will do it automatically on the fly.
As of llama.cpp build [b4282](https://github.com/ggerganov/llama.cpp/releases/tag/b4282) you will not be able to run the Q4_0_X_X files and will instead need to use Q4_0.
Additionally, if you want to get slightly better quality for , you can use IQ4_NL thanks to [this PR](https://github.com/ggerganov/llama.cpp/pull/10541) which will also repack the weights for ARM, though only the 4_4 for now. The loading time may be slower but it will result in an overall speed incrase.
<details>
<summary>Click to view Q4_0_X_X information (deprecated</summary>
I'm keeping this section to show the potential theoretical uplift in performance from using the Q4_0 with online repacking.
<details>
<summary>Click to view benchmarks on an AVX2 system (EPYC7702)</summary>
| model | size | params | backend | threads | test | t/s | % (vs Q4_0) |
| ------------------------------ | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: |-------------: |
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp512 | 204.03 ± 1.03 | 100% |
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp1024 | 282.92 ± 0.19 | 100% |
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp2048 | 259.49 ± 0.44 | 100% |
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg128 | 39.12 ± 0.27 | 100% |
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg256 | 39.31 ± 0.69 | 100% |
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg512 | 40.52 ± 0.03 | 100% |
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp512 | 301.02 ± 1.74 | 147% |
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp1024 | 287.23 ± 0.20 | 101% |
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp2048 | 262.77 ± 1.81 | 101% |
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg128 | 18.80 ± 0.99 | 48% |
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg256 | 24.46 ± 3.04 | 83% |
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg512 | 36.32 ± 3.59 | 90% |
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp512 | 271.71 ± 3.53 | 133% |
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp1024 | 279.86 ± 45.63 | 100% |
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp2048 | 320.77 ± 5.00 | 124% |
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg128 | 43.51 ± 0.05 | 111% |
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg256 | 43.35 ± 0.09 | 110% |
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg512 | 42.60 ± 0.31 | 105% |
Q4_0_8_8 offers a nice bump to prompt processing and a small bump to text generation
</details>
</details>
## Which file should I choose?
<details>
<summary>Click here for details</summary>
A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.
If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.
If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.
Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.
If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.
If you want to get more into the weeds, you can check out this extremely useful feature chart:
[llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix)
But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.
These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.
The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
</details>
## Credits
Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset.
Thank you ZeroWw for the inspiration to experiment with embed/output.
Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
|