bartowski's picture
measurement.json
bd17fae verified
metadata
language:
  - en
license: mit
base_model:
  - mistralai/Mistral-7B-v0.1
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
pipeline_tag: text-generation
model-index:
  - name: Mistral-ORPO-⍺
    results:
      - task:
          type: text-generation
        dataset:
          name: AlpacaEval 1
          type: AlpacaEval
        metrics:
          - type: AlpacaEval 1.0
            value: 87.92%
            name: Win Rate
        source:
          url: https://github.com/tatsu-lab/alpaca_eval
          name: self-reported
      - task:
          type: text-generation
        dataset:
          name: AlpacaEval 2
          type: AlpacaEval
        metrics:
          - type: AlpacaEval 2.0
            value: 11.33%
            name: Win Rate
        source:
          url: https://github.com/tatsu-lab/alpaca_eval
          name: self-reported
      - task:
          type: text-generation
        dataset:
          name: MT-Bench
          type: MT-Bench
        metrics:
          - type: MT-Bench
            value: 7.23
            name: Score
        source:
          url: https://github.com/lm-sys/FastChat/blob/main/fastchat/llm_judge/
          name: self-reported
quantized_by: bartowski

Exllama v2 Quantizations of mistral-orpo-alpha

Using turboderp's ExLlamaV2 v0.0.15 for quantization.

The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)

Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.

Original model: https://huggingface.co/kaist-ai/mistral-orpo-alpha

Branch Bits lm_head bits VRAM (4k) VRAM (16k) VRAM (32k) Description
8_0 8.0 8.0 8.4 GB 9.8 GB 11.8 GB Maximum quality that ExLlamaV2 can produce, near unquantized performance.
6_5 6.5 8.0 7.2 GB 8.6 GB 10.6 GB Very similar to 8.0, good tradeoff of size vs performance, recommended.
5_0 5.0 6.0 6.0 GB 7.4 GB 9.4 GB Slightly lower quality vs 6.5, but usable on 8GB cards.
4_25 4.25 6.0 5.3 GB 6.7 GB 8.7 GB GPTQ equivalent bits per weight, slightly higher quality.
3_5 3.5 6.0 4.7 GB 6.1 GB 8.1 GB Lower quality, only use if you have to.

Download instructions

With git:

git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/mistral-orpo-alpha-exl2 mistral-orpo-alpha-exl2-6_5

With huggingface hub (credit to TheBloke for instructions):

pip3 install huggingface-hub

To download the main (only useful if you only care about measurement.json) branch to a folder called mistral-orpo-alpha-exl2:

mkdir mistral-orpo-alpha-exl2
huggingface-cli download bartowski/mistral-orpo-alpha-exl2 --local-dir mistral-orpo-alpha-exl2 --local-dir-use-symlinks False

To download from a different branch, add the --revision parameter:

Linux:

mkdir mistral-orpo-alpha-exl2-6_5
huggingface-cli download bartowski/mistral-orpo-alpha-exl2 --revision 6_5 --local-dir mistral-orpo-alpha-exl2-6_5 --local-dir-use-symlinks False

Windows (which apparently doesn't like _ in folders sometimes?):

mkdir mistral-orpo-alpha-exl2-6.5
huggingface-cli download bartowski/mistral-orpo-alpha-exl2 --revision 6_5 --local-dir mistral-orpo-alpha-exl2-6.5 --local-dir-use-symlinks False

Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski