Andrew Luo
commited on
Commit
•
865f97a
1
Parent(s):
a31db03
handler
Browse files- handler.py +52 -0
- requirements.txt +3 -0
handler.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from typing import Dict, List, Any
|
5 |
+
|
6 |
+
class EndpointHandler():
|
7 |
+
def __init__(self, path=""):
|
8 |
+
model = VisionEncoderDecoderModel.from_pretrained(
|
9 |
+
"nlpconnect/vit-gpt2-image-captioning")
|
10 |
+
feature_extractor = ViTImageProcessor.from_pretrained(
|
11 |
+
"nlpconnect/vit-gpt2-image-captioning")
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
13 |
+
"nlpconnect/vit-gpt2-image-captioning")
|
14 |
+
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
model.to(device)
|
17 |
+
self.model = model
|
18 |
+
self.feature_extractor = feature_extractor
|
19 |
+
self.tokenizer = tokenizer
|
20 |
+
|
21 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
22 |
+
"""
|
23 |
+
data args:
|
24 |
+
inputs (:obj: `str`)
|
25 |
+
date (:obj: `str`)
|
26 |
+
Return:
|
27 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
28 |
+
"""
|
29 |
+
# get inputs
|
30 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
31 |
+
max_length = 128
|
32 |
+
num_beams = 4
|
33 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
34 |
+
image_paths = data.pop("image_paths", data)
|
35 |
+
images = []
|
36 |
+
for image_path in image_paths:
|
37 |
+
i_image = Image.open(image_path)
|
38 |
+
if i_image.mode != "RGB":
|
39 |
+
i_image = i_image.convert(mode="RGB")
|
40 |
+
|
41 |
+
images.append(i_image)
|
42 |
+
|
43 |
+
pixel_values = self.feature_extractor(
|
44 |
+
images=images, return_tensors="pt").pixel_values
|
45 |
+
pixel_values = pixel_values.to(device)
|
46 |
+
|
47 |
+
output_ids = self.model.generate(pixel_values, **gen_kwargs)
|
48 |
+
|
49 |
+
preds = self.tokenizer.batch_decode(
|
50 |
+
output_ids, skip_special_tokens=True)
|
51 |
+
preds = [pred.strip() for pred in preds]
|
52 |
+
return preds
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
Pillow
|