--- tags: - generated_from_trainer datasets: - klue metrics: - f1 base_model: klue/bert-base model-index: - name: bert-base-finetuned-ynat results: - task: type: text-classification name: Text Classification dataset: name: klue type: klue config: ynat split: train args: ynat metrics: - type: f1 value: 0.871180664370084 name: F1 --- # bert-base-finetuned-ynat This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3609 - F1: 0.8712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 179 | 0.3979 | 0.8611 | | No log | 2.0 | 358 | 0.3773 | 0.8669 | | 0.3007 | 3.0 | 537 | 0.3609 | 0.8712 | | 0.3007 | 4.0 | 716 | 0.3708 | 0.8708 | | 0.3007 | 5.0 | 895 | 0.3720 | 0.8697 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1