|
{ |
|
"model_type": "CustomModel", |
|
"architecture": "Feedforward Neural Network with Ba-inspired Activation Function", |
|
"input_size": 512, |
|
"hidden_size": 128, |
|
"output_size": 768, |
|
"activation_function": { |
|
"name": "Ba-inspired Activation", |
|
"details": { |
|
"weights_initialization": "Random Normal Distribution", |
|
"a": 0.5, |
|
"epsilon": 1e-6, |
|
"function": "epsilon * torch.cos(np.pi * a * fractional_inspired * torch.log(torch.abs(fractional_inspired) + epsilon))" |
|
} |
|
}, |
|
"tokenizer": "bert-base-uncased", |
|
"training_details": { |
|
"optimizer": "AdamW", |
|
"learning_rate": 5e-5, |
|
"loss_function": "CrossEntropyLoss", |
|
"batch_size": 8, |
|
"epochs": 3, |
|
"dataset": "Custom Dataset from JSON Lines File", |
|
"dataset_preprocessing": { |
|
"max_length": 512, |
|
"padding": true, |
|
"truncation": true |
|
} |
|
}, |
|
"performance": { |
|
"final_accuracy": "Dependent on specific run and dataset", |
|
"final_loss": "Dependent on specific run and dataset" |
|
}, |
|
"usage": { |
|
"inference": "Model can be used for tasks requiring sequence classification. Ensure input size matches model configuration.", |
|
"additional_notes": "Model and tokenizer need to be loaded with Hugging Face's transformers library for usage." |
|
} |
|
} |
|
|