File size: 1,713 Bytes
3600e94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db502fc
 
 
3600e94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db502fc
3600e94
 
 
 
 
db502fc
 
 
 
 
3600e94
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: bert_finetuned_resume
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert_finetuned_resume

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2759
- Accuracy: 0.9356
- F1: 0.9340

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log        | 1.0   | 114  | 0.3235          | 0.9158   | 0.9150 |
| No log        | 2.0   | 228  | 0.2864          | 0.9307   | 0.9294 |
| No log        | 3.0   | 342  | 0.2798          | 0.9307   | 0.9297 |
| No log        | 4.0   | 456  | 0.2785          | 0.9356   | 0.9340 |
| No log        | 5.0   | 570  | 0.2759          | 0.9356   | 0.9340 |


### Framework versions

- Transformers 4.37.1
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1