--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert_finetuned_resume results: [] --- # bert_finetuned_resume This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2759 - Accuracy: 0.9356 - F1: 0.9340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 114 | 0.3235 | 0.9158 | 0.9150 | | No log | 2.0 | 228 | 0.2864 | 0.9307 | 0.9294 | | No log | 3.0 | 342 | 0.2798 | 0.9307 | 0.9297 | | No log | 4.0 | 456 | 0.2785 | 0.9356 | 0.9340 | | No log | 5.0 | 570 | 0.2759 | 0.9356 | 0.9340 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1