---
library_name: peft
license: apache-2.0
base_model: JackFram/llama-160m
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 37a3c045-b032-4d86-94d1-2e0a0ed0e8cc
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: JackFram/llama-160m
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 809cbd0789d33540_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/809cbd0789d33540_train_data.json
type:
field_input: testcase
field_instruction: instruction
field_output: code
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: bbytxt/37a3c045-b032-4d86-94d1-2e0a0ed0e8cc
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-06
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 2.0
max_memory:
0: 70GB
max_steps: 100
micro_batch_size: 4
mlflow_experiment_name: /tmp/809cbd0789d33540_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
special_tokens:
pad_token:
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 37a3c045-b032-4d86-94d1-2e0a0ed0e8cc
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 37a3c045-b032-4d86-94d1-2e0a0ed0e8cc
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
# 37a3c045-b032-4d86-94d1-2e0a0ed0e8cc
This model is a fine-tuned version of [JackFram/llama-160m](https://huggingface.co/JackFram/llama-160m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.3985
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.0479 | 0.0003 | 1 | 4.6385 |
| 5.9213 | 0.0143 | 50 | 4.4730 |
| 5.632 | 0.0285 | 100 | 4.3985 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1