--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-135M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 62b1b6f5-ac9f-412c-8833-8a476361b9d2 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-135M-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 7bfb7829d600deaa_train_data.json ds_type: json format: custom path: /workspace/input_data/7bfb7829d600deaa_train_data.json type: field_input: system field_instruction: prompt field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: bbytxt/62b1b6f5-ac9f-412c-8833-8a476361b9d2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/7bfb7829d600deaa_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 9c4dede7-d354-40a9-9473-16dcf8a87364 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 9c4dede7-d354-40a9-9473-16dcf8a87364 warmup_steps: 30 weight_decay: 0.0 xformers_attention: null ```

# 62b1b6f5-ac9f-412c-8833-8a476361b9d2 This model is a fine-tuned version of [unsloth/SmolLM-135M-Instruct](https://huggingface.co/unsloth/SmolLM-135M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9423 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1057 | 0.0002 | 1 | 2.1401 | | 2.1909 | 0.0086 | 50 | 2.0113 | | 2.4645 | 0.0171 | 100 | 1.9609 | | 2.3952 | 0.0257 | 150 | 1.9427 | | 2.5445 | 0.0342 | 200 | 1.9423 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1